精英家教网 > 初中数学 > 题目详情
如图,已知边长为a的正方形ABCD,点E在AB上,点F在BC的延长线上,EF与AC交于点O,且AE=精英家教网CF.
(1)若a=4,则四边形EBFD的面积为
 

(2)若AE=
13
AB,求四边形ACFD与四边形EBFD面积的比;
(3)设BE=m,用含m的式子表示△AOE与△COF面积的差.
分析:(1)由AE=CF,∠EAD=∠FCD,AD=CD,得△DAE≌△DCF,即四边形EBFD的面积与正方形ABCD的面积相等,且为16;
(2)梯形ACFD的面积可根据公式直接求出,四边形EBFD的面积可根据S四边形EBFD=S四边形EBCD+S△CFD=S四边形EBCD+S△AED计算;
(3)△AOE与△COF的面积差,即为△ABC与△EBF的面积差.根据所给条件可以直接求得△ABC与△EBF的面积.
解答:解:(1)∵AE=CF,∠EAD=∠FCD,AD=CD,
∴△DAE≌△DCF,
∴四边形EBFD的面积=正方形ABC的面积=42=16;

(2)CF=AE=
1
3
AB=
a
3

∵四边形ABCD为正方形,
∴BC=CD=AD=AB=a,∠ABC=∠BCD=∠CDA=∠DAB=90°,AD∥BC,
∴S四边形ACFD=
(CF+AD)CD
2
=
(
a
3
+a)a
2
=
2a2
3

S四边形EBFD=S四边形EBCD+S△CFD=S四边形EBCD+S△AED=S正方形ABCD=a2
∴S四边形ACFD:S四边形EBFD=
2a2
3
:a2=2:3;

(3)CF=AE=a-m,FB=a+a-m=2a-m,
由(2)知∠ABC=90°,AB=BC,可得,
S△AOE+S四边形EOCB=S△ABC=
AB2
2
=
a2
2

S△COF+S四边形EOCB=S△EBF=
EB•FB
2
=
m(2a-m)
2
=
2am-m2
2

∴S△AOE+S四边形EOCB-(S△COF+S四边形EOCB)=
a2
2
-
2am-m2
2
=
a2-2am+m2
2

即S△AOE-S△COF=
a2-2am+m2
2
点评:综合正方形性质与三角形全等解题,要求思维灵活,擅于变通.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知边长为4的正方形ABCD中,E为AD中点,P为CE中点,F为BP中点,FH⊥BC交BC于H,连接PH,则下列结论正确的是(  )
①BE=CE;②sin∠EBP=
1
2
;③HP∥BE;④HF=1;⑤S△BFD=1.
A、①④⑤B、①②③
C、①②④D、①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知边长为l的正方形OABC在直角坐标系中,A、B两点在第一象限内,OA与x轴的夹角为30°,那么点B的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是(  )
A、10
3
-15
B、10-5
3
C、5
3
-5
D、20-10
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知边长为2的正三角形ABC中,P0是BC边的中点,一束光线自P0发出射到AC上的点P1后,依次反射到AB、BC上的点P2和P3(反射角等于入射角),且1<BP3
3
2
,则P1C长的取值范围是(  )
A、1<P1C<
7
6
B、
5
6
<P1C<1
C、
3
4
<P1C<
4
5
D、
7
6
<P1C<2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知边长为2的正三角形ABC沿着直线l滚动.设△ABC滚动240°时,C点的位置为C′,△ABC滚动480°时,A点的位置为A′.请你利用三角函数中正切的两角和公式:tan(α+β)=(tanα+tanβ)÷(1-tanα•tanβ),求出∠CAC′+∠CAA′的度数.(  )

查看答案和解析>>

同步练习册答案