精英家教网 > 初中数学 > 题目详情
1.将一副直角三角板如图①所示放置,其中∠AOB=∠COD=90°,∠BAO=60°,∠ABO=30°,∠ODC=45°.
(1)图①中AB与CD相交于点E,∠CAE的度数为120°;
(2)如图②,将图①中的三角板COD绕点O按每秒20°的速度顺时针方向旋转,当旋转角等于180°时停止旋转,则旋转多少秒时恰好AB∥OC?
(3)将图①中三角板COD绕点O按顺时针方向旋转,当旋转至图③所示位置,设AB与CD相交于点E,AO的延长线为OF,当∠DOF=2∠AOC时,求∠AED的度数.
(用“因为…、所以…”的格式说明理由.)

分析 (1)直接利用邻补角即可得出结论,
(2)利用平行线得出∠BOC=30°,进而得出∠AOC=120°,最后除以速度即可得出时间;
(3)先求出∠AOC=60°,进而得出∠AOD=120°,最后用四边形的内角和定理即可得出结论.

解答 解:(1)∵∠BAO=60°,
∴∠AEC=180°-∠BAO=120°;
故答案为120°;

(2)∵AB∥OC,
∴∠BOC=∠ABO=30°,
∴∠AOC=∠AOB+∠BOC=90°+30°=120°,
∴120°÷20°=6秒;
即:旋转6秒时,AB∥OC;

(3)∵点F是AO延长线上,∠COD=90°,
∴∠AOC+∠DOF=90°,
∵∠DOF=2∠AOC,
∴∠AOC=30°,∠DOF=60°,
∴∠AOD=180°-∠DOF=120°,
在四边形AODE中,根据四边形的内角和得,
∠AED=360°-∠OAB-∠AOD-∠ODC=360°-60°-120°-45°=135°.

点评 此题是三角形综合题,主要考查了邻补角,平行线的性质,互余的性质,四边形的内角和定理,解(2)的关键是求出∠AOC的度数,解(3)的关键是求出∠AOD,是一道比较简单的题目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.以下命题为真命题的是(  )
A.相等的角是对顶角B.两直线平行,同旁内角互补
C.若a2=b2,则a=bD.若a2+b2>0,则a>0,b>0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.达州市凤凰小学位于北纬31°,此地一年中冬至日正午时刻,太阳光与地面的夹角最小,约为35.5°;夏至日正午时刻,太阳光与地面的夹角最大,约为82.5°.已知该校一教学楼窗户朝南,窗户高207cm,如图(1)所示.请你为该窗户设计一个直角形遮阳棚BCD,如图(2)所示,要求最大限度地节省材料,并使其夏至日正午刚好遮住全部阳光,冬至日正午能射入室内的阳光没有遮挡.
(1)在图(3)中画出设计草图;
(2)求BC、CD的长度(结果精确到个位).
(参考数据:sin35.5°≈0.58,cos35.5°≈0.81,tan35.5°≈0.71,sin82.5°≈0.99,cos82.5°≈0.13,tan82.5°≈7.60)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,点B是线段AC的中点,以线段BC为边作矩形BCDE,点P是线段AC上一动点,连接DP,过点D作DP的垂线,交射线BE于点F,点P从点A出发,沿AC方向运动,当点P和点C重合时运动停止,设线段AP的长为x,△PBF的面积为S,S关于x的函数图象如图2所示(其中0≤x≤2,2<x≤m时,函数的解析式不同).
(1)填空:CD的长度为3;
(2)求S关于x的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:如图,直线y=-x+m分别与x轴交于点A(6,0),y轴交于点B,抛物线y=-x2+bx+c经过点A,B.
(1)求m的值和抛物线的解析式.
(2)若点P从点O向点A以每秒2个单位长度运动,设运动时间t(0<t<3).
①若过点P作PM垂直x轴,交抛物线于点M,AB于点N,设点M,N两点之间的距离为s.请你用含t的代数式表示s,并求出当s取最大值时t的值.
②若点Q也同时从点B向点O以每秒3个单位长度运动,当运动到点O时点P、点Q都停止运动.连结BP、AQ,且交于点C,当∠ACP=45°时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.若a>b,则下列式子正确的是(  )
A.a-2>b-2B.$\frac{1}{2}$a<$\frac{1}{2}$bC.4+3a<4+3bD.-2a>-2b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.
(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;
(2)若∠ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知如图,直线y1=k1x+b与双曲线y2=$\frac{{k}_{2}}{x}$的图象相交于A(2,-3)、B(-3,m)两点.
(1)求直线和双曲线的解析式.
(2)连接OA、OB,已知点P在x轴上,且S△PBO=2S△ABO,求点P的坐标.
(3)直线AB与x轴交于点C,在y轴上是否存在一点D,使△BCD的周长最小?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,已知等边△ABC的边长为2,D为BC上一点,且∠DAC=45°,则△ABD的面积为2$\sqrt{3}$-3.

查看答案和解析>>

同步练习册答案