【题目】(本题满分5分)如图,小明在大楼30米高
(即PH=30米)的窗口P处进行观测,测得山
坡上A处的俯角为15°,山脚B处的俯角为
60°,已知该山坡的坡度i(即tan∠ABC)为1:
,点P、H、B、C、A在同一个平面上.点
H、B、C在同一条直线上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度数等于 ▲ 度;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).
【答案】解:(1)30。
(2)设过点P的水平线为PQ,则由题意得:
450。
答:A、B两点间的距离约34.6米。
【解析】
试题(1)根据俯角以及坡度的定义即可求解;
(2)在直角△PHB中,根据三角函数即可求得PB的长,然后在直角△PBA中利用三角函数即可求解.
试题解析:
(1)∵山坡的坡度i(即tan∠ABC)为1:.
∴tan∠ABC=,
∴∠ABC=30°;
∵从P点望山脚B处的俯角60°,
∴∠PBH=60°,
∴∠ABP=180°﹣30°﹣60°=90°
故答案为:90.
(2)由题意得:∠PBH=60°,
∵∠ABC=30°,
∴∠ABP=90°,
∴△PAB为直角三角形,
又∵∠APB=45°,
在直角△PHB中,PB=PH÷sin∠PBH=45÷ =30(m).
在直角△PBA中,AB=PBtan∠BPA=30≈52.0(m).
故A、B两点间的距离约为52.0米.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2﹣2x﹣3经过x轴上的A,B两点,与y轴交于点C,线段BC与抛物线的对称轴相交于点D,点E为y轴上的一个动点.
(1)求直线BC的函数解析式,并求出点D的坐标;
(2)设点E的纵坐标为为m,在点E的运动过程中,当△BDE中为钝角三角形时,求m的取值范围;
(3)如图2,连结DE,将射线DE绕点D顺时针方向旋转90°,与抛物线交点为G,连结EG,DG得到Rt△GED.在点E的运动过程中,是否存在这样的Rt△GED,使得两直角边之比为2:1?如果存在,求出此时点G的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一元二次方程中,有著名的韦达定理:对于一元二次方程,如果方程有两个实数根,那么(说明:定理成立的条件)。比如方程中,,所以该方程有两个不等的实数根,记方程的两根为,,那么+=, =,请根据阅读材料解答下列各题:
(1)已知方程的两根为、,且 >,求下列各式的值:
① ②
(2)已知是一元二次方程的两个实数根.
①是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由.
②求使的值为整数的实数的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E.
(1)求证:EF是⊙O的切线;
(2)连接BC,若AB=5,BC=3,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图形的操作过程(本题中四个矩形的水平方向的边长均为a,竖直方向的边长均b):
●在图1中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);
●在图2中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).
(1)在图3中,请你类似地画一条有两个折点的线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;
(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:
S1=__________,S2=__________,S3=__________.
(3)联想与探索
如上图,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草场地面积是多少?并说明你的猜想是正确的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:
(1)请写出甲的骑行速度为 米/分,点M的坐标为 ;
(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);
(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小山坡上有一根垂直于地面的电线杆,小明从地面上的A处测得电线杆顶端点的仰角是45°,后他正对电线杆向前走6米到达B处,测得电线杆顶端点和电线杆底端D点的仰角分别是60°和30°.求电线杆的高度(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,…按此规律继续旋转,直到点P2012为止,则AP2012等于_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com