精英家教网 > 初中数学 > 题目详情
17.先化简再求值:-$\frac{1}{2}$a-2(a-$\frac{1}{2}$b2)-($\frac{3}{2}$a-$\frac{1}{3}$b2),其中a=-2,b=$\frac{2}{3}$.

分析 原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.

解答 解:原式=-$\frac{1}{2}$a-2a+b2-$\frac{3}{2}$a+$\frac{1}{3}$b2=-4a+$\frac{4}{3}$b2
当a=-2,b=$\frac{2}{3}$时,原式=8$\frac{16}{27}$.

点评 此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.先化简,再求值:(5xy-8x2)-2(-6x2+2xy+1)+2,其中x=-1,y=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若a2-$\frac{1}{3}$a=2,则5+12a+2a2-6a3=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.观察下面的运算,你能发现什么规律?
由($\sqrt{2}$+1)($\sqrt{2}$-1)=1,得$\frac{1}{\sqrt{2}+1}$=$\sqrt{2}-$1;
由($\sqrt{5}$+2)($\sqrt{5}$-2)=1,得$\frac{1}{\sqrt{5}+2}$=$\sqrt{5}$-2;
由($\sqrt{10}$+3)($\sqrt{10}$-3)=1,得$\frac{1}{\sqrt{10}+3}$=$\sqrt{10}$-3;
请用含有自然数n(n≥1)的式子将你发现的规律表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.观察下面计算过程:
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$) (1-$\frac{1}{3}$)(1+$\frac{1}{3}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$=$\frac{1}{2}$×$\frac{4}{3}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$=$\frac{1}{2}$×$\frac{5}{4}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$×$\frac{4}{5}$×$\frac{6}{5}$=$\frac{1}{2}$×$\frac{6}{5}$;…
你发现了什么规律?用含n的式子表示这个规律,并用你发现的规律直接写出
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{201{2}^{2}}$)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.用适当的方法解下列一元二次方程:
(1)(x-1)2-25=0
(2)2x2+3x-2=0(配方法);
(3)x2-4$\sqrt{2}$x+8=0
(4)(x-1)2+3(x-1)=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在△ABC中,AD与BE相交于点G,若点G是△ABC的重心,则S△AGE:S△GDE=2:1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简再求值:x2(x+y)(x-y)-(2y-x2)(-2y-x2),其中x=-2,y=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知:$\frac{1}{\sqrt{2}+1}=\sqrt{2}-1$,$\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\sqrt{2}$,$\frac{1}{\sqrt{4}+\sqrt{3}}=\sqrt{4}-\sqrt{3}$,…,则
$(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+…+$$\frac{1}{\sqrt{2016}+\sqrt{2015}})$$(\sqrt{2016}+1)$=2015.

查看答案和解析>>

同步练习册答案