精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,EAD边的中点,BE⊥AC,垂足为点F,连接DF,下列结论:①△AEF∽△CAB;②CF=2AF;③tan∠CAD=.其中正确的结论有 (  )

A. 3 B. 2 C. 1 D. 0

【答案】B

【解析】

①正确.只要证明∠EAC=ACB,ABC=AFE=90°即可;

②正确.由ADBC,推出AEF∽△CBF,推出,由AE=AD=BC,推出=,即CF=2AF;

④错误AE=a,AB=b,则AD=2a,由BAE∽△ADC,有,即b=a,可得tanCAD==即可得.

如图,过DDMBEACN,

∵四边形ABCD是矩形,

ADBC,ABC=90°,AD=BC,

BEAC于点F,

∴∠EAC=ACB,ABC=AFE=90°,

∴△AEF∽△CAB,故①正确;

ADBC,

∴△AEF∽△CBF,

AE=AD=BC,

=

CF=2AF,故②正确;

AE=a,AB=b,则AD=2a,

BAE∽△ADC,有

,即b=a,

tanCAD===故③错误,

所以正确的有2个,

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.

(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;

(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知B港口位于A观测点北偏东45°方向,且其到A观测点正北风向的距离BM的长为10km,一艘货轮从B港口沿如图所示的BC方向航行4km到达C处,测得C处位于A观测点北偏东75°方向,则此时货轮与A观测点之间的距离AC的长为( )km.

A.8 B.9 C.6 D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某游泳馆推出了两种收费方式.

方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.

方式二:顾客不购买会员卡,每次游泳付费40元.

设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).

1)请分别写出y1y2x之间的函数表达式.

2)若小亮一年内来此游泳馆的次数为15次,选择哪种方式比较划算?

3)若小亮计划拿出1400元用于在此游泳馆游泳,采用哪种付费方式更划算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的顶点坐标分别为A(-51),B(-11),C(-43).

1)若A1B1C1ABC关于y轴对称,点ABC的对应点分别为A1B1C1,请画出A1B1C1并写出A1B1C1的坐标;

2)若点P为平面内不与C重合的一点,PABABC全等,请写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=ACAD⊥BCCE⊥ABAE=CE.求证:

1△AEF≌△CEB

2AF=2CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABDC中,∠D=B=90°,点OBD的中点,且AO平分∠BAC.

(1)求证:CO平分∠ACD;

(2)求证:OAOC;

(3)求证:AB+CD=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.

求购买1副乒乓球拍和1副羽毛球拍各需多少元;

若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?

查看答案和解析>>

同步练习册答案