【题目】如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为( )
A. (A) B. (B) C. (C) D. (D)
【答案】B
【解析】如图1和图2,过点E作EH⊥DF于点H,
∵在△DEF中,∠DEF=90°,∠D=30°,DF=16,
∴EF=8,DE=,EH=,DH=12,HF=4,
(1)如图1,当点A在DE上时,此时点B在DH上,即,
∵AB⊥DF于点B,∠D=30°,BD= ,
∴AB=BD·tan∠D= ,
∴此时y=S△ABD= =,即,
∴当时,y有最大值,此时点A与E重合;
(2)如图2,当点A在EF上时,此时点B在HF上,即,
∵AB⊥DF于点B,∠D=30°,BD= ,
∴BF= ,∠ABF=90°,∠F=60°,
∴AB=BF·tan∠F=,
∴此时y=S△ABD=BD·AB= ,即y= ;
综上所述,结合二次函数的图象特征可知y随x变化而变化的图象应该是B选项中的图象.
故选B.
科目:初中数学 来源: 题型:
【题目】某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:≈1.7,≈1.4).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知轮船A在灯塔P的北偏东30°的方向上,轮船B在灯塔P的南偏东70°的方向上.
(1)求从灯塔P看两轮船的视角(即∠APB)的度数?
(2)轮船C在∠APB的角平分线上,则轮船C在灯塔P的什么方位?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,P为BC边上任意一点,PF⊥AB于F,PE⊥AC于E,若AC边上的高BD=a.
(1)试说明PE+PF=a;
(2)若点P在BC的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a的关系式,不需要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索发现:
(1)计算:当a 4, b 3时, a2 b2 ; (a b)(a b) 。
当a 1, b 2 时, a2 b2 ; (a b)(a b) 。
(2)你能从上面的计算中发现什么结论? 。
(3)利用你发现的结论,求 的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为a2(a>1).将正方形ABCD在数轴上水平移动,移动后的正方形记为A′B′C′D′,点A、B、C、D的对应点分别为A′、B′、C′、D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分图形的面积记为S.当S=a时,数轴上点A′表示的数是_____.(用含a的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】的意义是数轴上表示x、y 的两点之间的距离。例如:表示4与 —2 的差的绝对值,实际上也可以理解为 4 与—2 两数在数轴上所对应的两点之间的距离;同理 也可以理解为 x 与 3 两数在数轴上所对应的两点之间的距离。试探索:
(1)= ;
(2)若 ,则 x= ;
(3)请你找出符合条件的整数x ,使得
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com