分析 (1)由等边三角形的性质得出AC=DC,∠DAC=∠ACD=∠CBE=∠BCE=60°,BC=EC,得出∠AE=∠DCB,由SAS证明△ACE≌△DCB(SAS),即可证明AE=BD;
(2)由(1)得出∠1=∠2,∠3=∠4,得出A、D、C、M四点共圆,B、E、C、M四点共圆,由圆周角定理得出∠DMC=∠DAC=60°,∠EMC=∠CBE=60°,即可得出结论.
解答 解:
(1)证明:如图所示:
∵△ACD、△BCE是等边三角形,
∴AC=DC,∠DAC=∠ACD=∠CBE=∠BCE=60°,BC=EC,
∴∠AE=∠DCB,
在△ACE和△DCB中,
$\left\{\begin{array}{l}{AC=DC}\\{∠ACE=∠DCB}\\{EC=BC}\end{array}\right.$,
∴△ACE≌△DCB(SAS),
∴AE=BD;
(2)
∵△ACE≌△DCB,
∴∠1=∠2,∠3=∠4,
∴A、D、C、M四点共圆,B、E、C、M四点共圆,
∴∠DMC=∠DAC=60°,∠EMC=∠CBE=60°,
∴∠DMC=∠EMC,
∴MC平分∠DME.
点评 本题考查了等边三角形的性质、全等三角形的判定与性质、四点共圆、圆周角定理;熟练掌握等边三角形的性质,并能进行推理论证是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com