精英家教网 > 初中数学 > 题目详情
如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.
(1)解方程x2-14x+48=0得
x1=6,x2=8.
∵OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根,
∴OC=6,OA=8.
∴C(0,6);

(2)设直线MN的解析式是y=kx+b(k≠0).
由(1)知,OA=8,则A(8,0).
∵点A、C都在直线MN上,
8k+b=0
b=6

解得,
k=-
3
4
b=6

∴直线MN的解析式为y=-
3
4
x+6;

(3)∵A(8,0),C(0,6),
∴根据题意知B(8,6).
∵点P在直线MNy=-
3
4
x+6上,
∴设P(a,-
3
4
a+6)
当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:
①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);
②当PC=BC时,a2+(-
3
4
a+6-6)2=64,
解得,a=±
32
5
,则P2(-
32
5
54
5
),P3
32
5
6
5
);
③当PB=BC时,(a-8)2+(-
3
4
a+6-6)2=64,
解得,a=
256
25
,则-
3
4
a+6=-
42
25
,∴P4
256
25
,-
42
25
).
综上所述,符合条件的点P有:P1(4,3),P2(-
32
5
54
5
)P3
32
5
6
5
),P4
256
25
,-
42
25
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系中,点A,B的坐标分别为A(2,-5),B(5,1).在同一个坐标系内画出满足下列条件的点(保留画图痕迹),并求出该点的坐标.
(1)在y轴上找一点C,使得AC+BC的值最小;
(2)在x轴上找一点D,使得AD-BD的值最大.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
1
3
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图.
(1)根据图象,求函数y=kx+b的解析式;
(2)在图中画出函数y=-2x+2的图象;
(3)x______时,y=kx+b的函数值大于y=-2x+2的函数值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,直线y=-
3
4
x+6与坐标轴相交于A、B两点,以AB边在第一象限内作矩形ABCD,使AD=5
(1)求点A、B的坐标;
(2)过点D作DH⊥x轴于H,求证:△DHA△AOB;
(3)求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=kx+3中,当x=2时,y=-3,那么当x=-2时,y等于(  )
A.-1B.-3C.7D.9

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形AOCB的边长为4,点C在x轴上,点A在y轴上,E是AB的中点.
(1)直接写出点C、E的坐标;
(2)求直线EC的解析式;
(3)若点P是直线EC在第一象限的一个动点,当点P运动到什么位置时,图中存在与△AOP全等的三角形?请画出所有符合条件的图形,说明全等的理由,并求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.
(1)求点A、B、D的坐标;
(2)求直线BD的表达式.

查看答案和解析>>

同步练习册答案