精英家教网 > 初中数学 > 题目详情
将两块含30°角且大小相同的直角三角板如图1摆放.

(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,求证:CP1=AP1
(2)将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C(如图3),点P2是A2C与AB的交点.线段CP1与P1P2之间存在一个确定的等量关系,请你写出这个关系式并说明理由;
(3)将图3中线段CP1绕点C顺时针旋转60°到CP3(如图4),连接P3P2,求证:P3P2⊥AB.
【答案】分析:(1)由旋转可知,△P1AC是含有特殊角45°,30°的钝角三角形,作垂线,把问题转化到两个直角三角形求CP1,AP1的关系;
(2)此时,可推出∠1=30°,∠2=45°,△P1P2C是含有特殊角45°,30°的钝角三角形,类似地作垂线,解直角三角形,确定CP1,P1P2的关系;
(3)分析旋转角及图形特征,易证△CP1P2≌△CP3P2,根据角的关系证明垂直.
解答:(1)证明:过点P1作CA的垂线,垂足为D.
易知:△CDP1为等腰直角三角形,
△P1DA是直角三角形,且∠A=30°,
所以CP1=P1D,P1D=AP1
故CP1=AP1

(2)解:过点P1作CA2的垂线,垂足为E,
易知:△P1EP2是等腰直角三角形,
(其中∠2=∠A+∠P2CA=45°),
因为△P1CE是直角三角形,且∠1=30°,
所以CP1=2P1E,P1E=P1P2
故CP1=P1P2

(3)证明:将图3中线段CP1绕点C顺时针旋转60°到CP3
易证:△CP1P2≌△CP3P2,于是∠CP3P2=∠CP1P2=105°,
∴∠P1P2P3=360°-105°×2-60°=90°,
故P2P3⊥AB.
点评:本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,充分运用特殊直角三角形的特点找线段关系.
练习册系列答案
相关习题

科目:初中数学 来源:第25章《图形的变换》中考题集(17):25.2 旋转变换(解析版) 题型:解答题

将两块含30°角且大小相同的直角三角板如图1摆放.

(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,求证:CP1=AP1
(2)将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C(如图3),点P2是A2C与AB的交点.线段CP1与P1P2之间存在一个确定的等量关系,请你写出这个关系式并说明理由;
(3)将图3中线段CP1绕点C顺时针旋转60°到CP3(如图4),连接P3P2,求证:P3P2⊥AB.

查看答案和解析>>

科目:初中数学 来源:2008-2009学年福建省三明市清流县九年级(上)期中数学试卷(解析版) 题型:解答题

将两块含 30°角且大小相同的直角三角板如图①摆放,将图①中△A1B1C 绕点 C 顺时针旋转 45°得图②,点 P 是 A1C 与 AB 的交点,若 AP=2,求 C P 的长.

查看答案和解析>>

科目:初中数学 来源:第23章《旋转》中考题集(06):23.1 图形的旋转(解析版) 题型:解答题

将两块含30°角且大小相同的直角三角板如图1摆放.

(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,求证:CP1=AP1
(2)将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C(如图3),点P2是A2C与AB的交点.线段CP1与P1P2之间存在一个确定的等量关系,请你写出这个关系式并说明理由;
(3)将图3中线段CP1绕点C顺时针旋转60°到CP3(如图4),连接P3P2,求证:P3P2⊥AB.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《图形的旋转》(03)(解析版) 题型:解答题

(2005•武汉)将两块含30°角且大小相同的直角三角板如图1摆放.

(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,求证:CP1=AP1
(2)将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C(如图3),点P2是A2C与AB的交点.线段CP1与P1P2之间存在一个确定的等量关系,请你写出这个关系式并说明理由;
(3)将图3中线段CP1绕点C顺时针旋转60°到CP3(如图4),连接P3P2,求证:P3P2⊥AB.

查看答案和解析>>

同步练习册答案