A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 由SAS△AED≌△AEF,证明证明△ABF≌△ACD,得出BF=CD;由△AED≌△AEF,得到DE=EF;证明∠EBF=90°,即可解决问题.
解答 解:∵∠DAF=90°,∠DAE=45°,
∴∠FAE=45°=∠DAE,
在△AED与△AEF中,AE=AE,∠EAF=∠EAD,AD=AF,
∴△AED≌△AEF(SAS),①正确;
没有条件能证出△AED为等腰三角形,②错误;
∵∠BAC=∠DAF=90°,
∴∠BAF=∠DAC;
在△ABF与△ACD中,AB=AC,∠FAB=∠DAC,AF=AD,
∴△ABF≌△ACD(SAS),
∴BF=CD;
∵△AED≌△AEF,
∴DE=EF;
∵BE+BF>EF,而BF=CD,
∴BE+DC>DE,③正确;
∵∠EBF=90°,
∴BE2+BF2=EF2,
即BE2+DC2=DE2,④正确;
综上所述:①③④3个均正确,
故选B.
点评 该题主要考查了全等三角形的判定及性质、勾股定理、三角形的三边关系等知识;证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 120° | B. | 130° | C. | 140° | D. | 150° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com