【题目】现有七个数﹣1,﹣2,﹣2,﹣4,﹣4,﹣8,﹣8将它们填入图1(3个圆两两相交分成7个部分)中,使得每个圆内部的4个数之积相等,设这个积为m,如图2给出了一种填法,此时m=64,在所有的填法中,m的最大值为_____.
科目:初中数学 来源: 题型:
【题目】某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两家加工厂都想加工这批产品,已知红星厂单独加工比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品,公司需付给红星厂每天加工费800元,付给巨星厂每天加工费1200元.
这个公司要加工多少件新产品?
公司的产品可由一家工厂单独加工完成,也可由两家工厂合作完成,在加工过程中公司需另派一名工程师每天到厂家进行指导,并支付工程师每天10元的午餐补助,请你帮助公司从所有可供选择的方案中,选择一种既省钱又省时的加工方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,射线OP∥AE,∠AOP的角平分线交射线AE于点B.
(1)若∠A=50°,求∠ABO的度数;
(2)如图2,若点C在射线AE上,OB平分∠AOC交AE于点B,OD平分∠COP交AE于点D,∠ABO-∠AOB=70°,求∠ADO的度数;
(3)如图3,若∠A=α,依次作出∠AOP的角平分线OB,∠BOP的角平分线OB1,∠B1OP的角平分线OB2,…,∠Bn-1OP的角平分线OBn,其中点B,B1,B2,…,Bn-1,Bn都在射线AE上,试求∠ABnO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,四边形ABED的面积为6,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从点A看一山坡上的电线杆PQ,观测点P的仰角是45°,向前走6m到达B点,测得顶端点P和杆底端点Q的仰角分别是60°和30°,求该电线杆PQ的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知线段AB=12cm,点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若点C恰好是AB的中点,则DE= cm;若AC=4cm,则DE= cm;
(2)随着C点位置的改变,DE的长是否会改变?如果改变,请说明原因;如果不变,请求出DE的长;
(3)知识迁移:如图②,已知∠AOB=120°,过角的内部任意一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE的度数与射线OC的位置无关.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面三行数:
第1列 | 第2列 | 第3列 | 第4列 | … | 第n列 |
﹣3 | 9 | a | 81 | … | r |
1 | ﹣3 | 9 | b | … | s |
﹣2 | 10 | c | 82 | … | t |
(1)直接写出a,b,c的值;
(2)直接写出r,s,t的值;
(3)设x,y,z分别为第①②③行的第2019个数,求x+6y+z的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y= (x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
小明遇到这样问题:
如图1,在中,,在AB上取一点D,在AC延长线上取一点E,若,判断PD与PE的数量关系.
小明通过思考发现,可以采用两种方法解决向题:
方法一:过点D作,交BC于F,即可解决向题;
方法二:过点D、点E分别向直线BC引垂钱,垂足分别是F、G,也可解决问题.
请回答:PD与PE的数量关系是______;
任选上述两种方法中的一种方法,在图1中补全图象,并给出证明;
参考小明思考问题的方法,解决问题:
如图2,在中,,将AC绕点A顺时针旋转度后得到AD,过点D作,交AB于点E,,则图中是否存在与DE相等的线段,请找出来并给出证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com