精英家教网 > 初中数学 > 题目详情
(2013•石景山区一模)如图,△ABC中,∠ACB=90°,AC=2,以AC为边向右侧作等边三角形ACD.
(1)如图1,将线段AB绕点A逆时针旋转60°,得到线段AB1,联结DB1,则与DB1长度相等的线段为
BC
BC
 (直接写出结论);
(2)如图2,若P是线段BC上任意一点(不与点C重合),点P绕点A逆时针旋转60°得到点Q,求∠ADQ的度数;
(3)画图并探究:若P是直线BC上任意一点(不与点C重合),点P绕点A逆时针旋转60°得到点Q,是否存在点P,使得以A、C、Q、D、为顶点的四边形是梯形,若存在,请指出点P的位置,并求出PC的长;若不存在,请说明理由.
分析:(1)根据旋转的性质得出,DB1长度相等的线段为BC;
(2)首先根据全等三角形的判定方法得出△PAC≌△QAD,进而得出∠ADQ的度数;
(3)分别利用当AD∥CQ时,当AQ∥CD时,利用梯形的性质分别求出即可.
解答:解:(1)将线段AB绕点A逆时针旋转60°,得到线段AB1,联结DB1,则与DB1长度相等的线段为BC;
故答案为:BC;

(2)由作图知AP=AQ,∠PAQ=60°
∵△ACD是等边三角形.
∴AC=AD,∠CAD=60°=∠PAQ,
∴∠PAC=∠QAD,
在△PAC和△QAD中
AP=AQ
∠PAC=∠QAD
AC=AD

∴△PAC≌△QAD(SAS),
∴∠ADQ=∠ACP=90°;

(3)如图3,同①可证△PAC≌△QAD,∠ADQ=∠ACP=90°,
当AD∥CQ时,∠CQD=180°-∠ADQ=90°,
∵∠ADC=60°,
∴∠QDC=30°,
∵CD=AC=2,
CQ=1,DQ=
3

PC=DQ=
3
且CQ≠AD,
∴此时四边形ACQD是梯形.
如图4,同理可证△PAC≌△QAD,∠ADQ=∠ACP=90°,
当AQ∥CD时,∠QAD=∠ADC=60°,∠AQD=30°,
∵AD=AC=2,
AQ=4,DQ=2
3

PC=DQ=2
3

此时DQ与AC不平行,四边形ACDQ是梯形.
综上所述,这样的点P有两个,分别在C点两侧,
当P点在C点左侧时,PC=
3
;当P点在C点右侧时,PC=2
3
点评:此题主要考查了全等三角形的判定以及旋转的性质和梯形的性质等知识,利用分类讨论得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•石景山区二模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•石景山区二模)一射击运动员在一次射击练习中打出的成绩如下表所示:这次成绩的众数、平均数是(  )
成绩(环) 6 7 8 9 10
次数 1 2 2 4 1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•石景山区二模)甲盒装有3个红球和4个黑球,乙盒装有3个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别.搅匀两盒中的球,从盒中分别任意摸出一个球.正确说法是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•石景山区二模)如图,AB是⊙O的直径,C是⊙O上的一点,若AC=8,AB=10,OD⊥BC于点D,则BD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•石景山区二模)若二次函数y=x2+bx+7配方后为y=(x-1)2+k,则b、k的值分别为(  )

查看答案和解析>>

同步练习册答案