精英家教网 > 初中数学 > 题目详情
如图,在△ABC中∠BAC=90°,AB=AC=2,圆A的半径1,点O在BC边上运动(与点B,C不重合),设BO=x,△AOC的面积是y.
(1)求y关于x的函数关系式及自变量的取值范围;
(2)以点O为圆心,BO为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积.

【答案】分析:(1)由∠BAC=90°,AB=AC=2 ,根据勾股定理即可求得BC,且∠B=∠C,然后作AM⊥BC,由S△AOC=OC•AM,即可求得y关于x的函数解析式;
(2)由⊙O与⊙A外切或内切,即可求得ON的值,继而求得△AOC的面积.
解答:解:(1)∵∠BAC=90°,AB=AC=2
由勾股定理知BC==4,且∠B=∠C,
作AM⊥BC,
则∠BAM=45°,BM=CM=2=AM,
∵BO=x,则OC=4-x,
∴S△AOC=OC•AM=×(4-x)×2=4-x,
即y=4-x (0<x<4);

(2)①作AD⊥BC于点D,
∵△ABC为等腰直角三角形,BC=4,
∴AD为BC边上的中线,
∴AD==2,
∴S△AOC=
∵BO=x,△AOC的面积为y,
∴y=4-x(0<x<4),

②过O点作OE⊥AB交AB于E,
∵⊙A的半径为1,OB=x,
当两圆外切时,
∴OA=1+x,
∵△ABC为等腰直角三角形,
∴∠B=45°,
∴BE=OE=
∴在△AEO中,AO2=AE2+OE2=(AB-BE)2+OE2
∴(1+x)2=(2-2+(2
∴x=
∵△AOC面积=y=4-x,
∴△AOC面积=
当两圆内切时,
∴OA=x-1,
∵AO2=AE2+OE2=(AB-BE)2+OE2
∴(x-1)2=(2-2+(2
∴x=
∴△AOC面积=y=4-x=4-=
∴△AOC面积为
点评:此题考查了相切两圆的性质,三角形面积的求解方法,以及勾股定理的应用等知识.此题综合性较强,难度适中,解题的关键是方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案