分析 由于∠APC=∠D1BE1=60°,则可判断点P、D1、B、E1共圆,于是可判断当BP⊥BC时,点P到BC所在直线的距离的最大值,此时点E1在AB上,然后利用含30度的直角三角形三边的关系可得点P到BC所在直线的距离的最大值.
解答 解:∵∠APC=∠D1BE1=60°,
∴点P、D1、B、E1共圆,
∴当BP⊥BC时,点P到BC所在直线的距离的最大值,此时点E1在AB上,
在Rt△PBC中,PB=$\frac{\sqrt{3}}{3}$AB=$\frac{\sqrt{3}}{3}$×2$\sqrt{3}$=2,
∴点P到BC所在直线的距离的最大值为2.
故答案为:2
点评 本题考查了旋转问题,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 16cm | B. | 18cm | C. | 20cm | D. | 22cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com