精英家教网 > 初中数学 > 题目详情
某运输公司准备运输一批货物,需要的货船数量y(艘)与货船的核定装载量x(吨)之间的函数关系如图所示,请根据图象提供的信息回答问题:
(1)这批货物的质量是多少吨?
(2)写出y与x的函数关系式.
(3)如果要求出动货船不超过4艘,那么每艘货船的核定装载量至少要多少吨?
(1)这批货物的质量是:180×2=360(吨);

(2)y与x的函数关系式是y=
360
x


(3)∵y≤4
360
x
≤4

∵x>0
∴x≥90
答:如果要求出动货船不超过4艘,那么每艘货船的核定装载量至少要90吨.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

某反比例函数的图象过点(-1,6),则该反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,设直线l2:y=-2x+8与x轴相交于点N,与直线l1相交于点E(1,a),双曲线y=
k
x
(x>0)经过点E,且与直线l1相交于另一点F(9,
2
3
).
(1)求双曲线解析式及直线l1的解析式;
(2)点P在直线l1上,过点F向y轴作垂线,垂足为点B,交直线l2于点H,过点P向x轴作垂线,垂足为点D,与FB交于点C.
①请直接写出当线段PH与线段PN的差最大时点P的坐标;
②当以P、B、C三点为顶点的三角形与△AMO相似时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=
1
2x
的图象在第一限内的一个分支,点P是这条曲线的任意一点,它的坐标是(a,b),由点P向x轴、y轴所作的垂线PM、PN(点M、N为垂足)分别与直线AB相交于点E和F.
(1)求△OEF的面积(a,b的代数式表示);
(2)△AOF与△BOE是否一定相似?如果一定相似,请证明;如果不一定相似,请说明理由;
(3)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,是否有大小始终保持不变的角?若有,请求出其大小;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线l分别与x轴、y轴交于A,B两点,与双曲线y=
a
x
(a≠0,x>0)分别交于D、E两点.
(1)若点D的坐标为(4,1),点E的坐标为(1,4):
①分别求出直线l与双曲线的解析式;
②若将直线l向下平移m(m>0)个单位,当m为何值时,直线l与双曲线有且只有一个交点?
(2)假设点A的坐标为(a,0),点B的坐标为(0,b),点D为线段AB的n等分点,请直接写出b的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数y=
k1
2x
的图象与一次函数y=k2x+b的图象交于A,B两点,A(1,n),B(-
1
2
,-2).
(1)求反比例函数和一次函数的解析式;
(2)在x轴上是否存在点P,使△AOP为等腰三角形?若存在,请你直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线与双曲线相交于A(1,2)与B(-2,n).
(1)求两函数的解析式;
(2)根据图象直接写出:
①当x取何值时,一次函数的值等于反比例函数的值;
②当x取何值时,一次函数的值>反比例函数的值;
③当x取何值时,一次函数的值<反比例函数的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=
k
x
经过正方形AOBC对角线的支点,半径为(4-2
2
)的圆内切于△ABC,求k的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△P1OA1、△P2A1A2是等腰直角三角形,点P1、P2在函数y=
4
x
(x>0)
的图象上,斜边OA1、A1A2都在x轴上,则点A2的坐标是(  )
A.(2
2
-2
,0)
B.(2
2
+2
,0)
C.(4
2
,0)
D.(2
2
,0)

查看答案和解析>>

同步练习册答案