分析 (1)根据扇形的面积公式计算即可得到结果;
(2)要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,求出EA长即可,在Rt△EOA中,OA=8,0E=10,根据勾股定理求出AE,即可得出结果.
解答 解:(1)S圆锥的侧面积=$\frac{1}{2}$×10×10π=50π;
(2)圆锥侧面沿母线OF展开可得下图:
则$\widehat{EF}$=圆锥底面周长的一半=$\frac{1}{2}$×10π=$\frac{10nπ}{180}$,
∴n=90,即∠EOF=90°,
在Rt△AOE中,OA=8cm,OE=10cm,
根据勾股定理可得:AE=2$\sqrt{41}$cm,
所以蚂蚁爬行的最短距离为2$\sqrt{41}$cm.
点评 本题考查了平面展开-最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | m>$\frac{1}{2}$ | B. | m<2 | C. | m<$\frac{1}{2}$ | D. | m>2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com