精英家教网 > 初中数学 > 题目详情
已知:如图,抛物线y=
3
3
(x2-4x+a)
与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,
3
)

(1)直接写出a的值;
(2)在抛物线的对称轴上是否存在一点P,使得⊙P与y轴和直线BC同时相切?若存在,求出点P的坐标,若不存在,请说明理由;
(3)把抛物线沿x轴向右平移m(m>0)个单位,所得抛物线与x轴交于A′、B′两点,精英家教网与原抛物线交于点M,当△MA′B′的面积为
3
6
时,求m的值.
分析:(1)把C的坐标代入函数解析式即可求得a的值;
(2)首先求得抛物线的对称轴是x=2,⊙P与y轴和直线BC同时相切,则圆心到直线的距离等于2,然后分P在x轴上方与x轴下方两种情况进行讨论,利用三角函数即可求解;
(3)根据平移的性质可得:A′B′=AB=2,作MN⊥x轴,垂足为N,根据△MA′B′的计算方法,即可求得m的值.
解答:精英家教网解:(1)a=3(3分)

(2)抛物线的对称轴为直线x=2,抛物线与x轴的交点为H A(1,0)B(3,0)(4分)
设P(2,y)作PD⊥BC,垂足为D,作PE⊥y轴,垂足为E,则PD=PE=2
∴当P在x轴上方时
tan∠CBO=
OC
OB
=
3
3
∴∠CBO=30°(5分)  GH=
3
3
∴∠PGD=60°
∴PG=y-
3
3
=
PD
sin60°
=
4
3
3
PH=
5
3
3
(6分)
当P在x轴下方时PH=
3
(7分)
∴P的坐标为(2,
5
3
3
)或(2,-
3
)  (8分)

(3)作MN⊥x轴,垂足为N 由平移可知,A′B′=AB=2
∵△MA′B′的面积为
3
6
∴MN=
3
6
(9分)
y=
3
6
时,
3
3
x2-
4
3
3
x+
3
=
3
6
(10分)
x=
6
2
∴m=
4+
6
2
-
4-
6
2
=
6
(11分)
y=-
3
6
时,
3
3
x2-
4
3
3
x+
3
=-
3
6
(12分)
x=
2
2
∴m=
4+
2
2
-
4-
2
2
=
2
(13分)
∴m的值为
6
2
点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,精英家教网与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.
(1)求这条抛物线的解析式;
(2)求图象经过M、A两点的一次函数解析式;
(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案