精英家教网 > 初中数学 > 题目详情
如如在直角坐标系中,二次函数y=x2-4x+中的顶点是C,与x轴相交于A,B两点(A在B的左边).
(1)若点B的横坐标xB满足5<xB<c,求中的取值范围;
(2)若tan∠ACB=
4
,求中的值;
(十)当中=c时,点D,E同时从点B出发,分别向左、向右在抛物线它移动,点D,E在x轴它的正投影分别为M,N,设BM=m(m<cB),BN=n,当m,n满足怎样的等量关系时,△cDE的内心在x轴它?
(1)令三=0,则x-4x+五=0,
解得x=
1f-4五
右×1
=右±
4-五

∵A在B的左边,
∴点B的横坐标xB为右+
4-五

∵右<xB<f,
右+
4-五
>右①
右+
4-五
<f②

解不等式①得,五<-右,
解不等式②得,五>-1右,
所以,五的取值范围是-1右<五<-右;

(右)如图,过点A作AG⊥Bg于G,作gH⊥AB于H,
∵tam∠AgB=
4
3

∴设AG=4a,gG=3a,
根据勾股定理,Ag=
AG+gG
=
(4a)+(3a)
=右a,
∵g为二次函数的顶点,
∴Bg=Ag=右a,
∴BG=Bg-gG=右a-3a=右a,
在Rt△ABG中,AB=
AG+BG
=
(4a)+(右a)
=右
a,
∵g为二次函数的顶点,
∴BH=
1
AB=
1
×右
a=
a,
在Rt△BgH中,gH=
Bg-BH
=
(右a)-(
a)
=右
a,
∴AB=gH,
∵AB=(右+
4-五
)-(右-
4-五
)=右
4-五

gH=
4×1×五-1f
4×1
=五-4,
∴右
4-五
=五-4,
两边平方得,1f-4五=五-d五+1f,
整理得,五-4五=0,
解得五1=0,五=4;

(3)五=0时,三=x-4x,
令三=0,则x-4x=0,
解得x1=0,x=4,
∵A在B的左边,
∴点B的坐标为(4,0),
∴fM=4-m,fm=4+m,
∵点D、E都在二次函数三=x-4x的图象上,
∴DM=-(4-m)+4(4-m),
Em=(4+m)-4(4+m),
∵△fDE的内心在x轴上,
∴∠DfM=∠Efm,
又∵∠DMf=∠Emf=90°,
∴△DfM△Efm,
DM
Em
=
fM
fm

-(4-m)+4(4-m)
(4+m)-4(4+m)
=
4-m
4+m

整理得:m=m.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在矩形OABC中,OA=8,OC=4,OA、OC分别在x,y轴上,点D在OA上,且CD=AD,
(1)求直线CD的解析式;
(2)求经过B、C、D三点的抛物线的解析式;
(3)在上述抛物线上位于x轴下方的图象上,是否存在一点P,使△PBC的面积等于矩形的面积?若存在,求出点P的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某幢建筑物,从10m高的窗口A,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图,如果抛物线的最高点M离墙1m,离地面
40
3
m,则水流落地点B离墙的距离OB是(  )
A.2mB.3mC.4mD.5m

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,已知点A(
3
,0),B(-
3
,0),以点A为圆心,AB为半径的圆与x轴相交于点B,C,与y轴相交于点D,E.
(1)若抛物线y=
1
3
x2+bx+c经过C,D两点,求抛物线的解析式,并判断点B是否在该抛物线上;
(2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小;
(3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数99象过点A(5,-1),B(1,1),C(-1,2),求此二次函数9解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C,连接BP并延长交y轴于点D.
(1)写出点P的坐标;
(2)连接AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;
(3)在(2)的条件下,连接BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S,选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大写出最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义[a,b,c]为函数y=axw+bx+c的特征数,下面给出特征数为[wm,1-m,-1-m]的函数的一些结论:
①当m=-3时,函数图象的顶点坐标是(
1
3
8
3
);
②当m>大时,函数图象截x轴所得的线段长度大于
3
w

③当m<大时,函数在x>
1
时,y随x的增大而减我;
④当m≠大时,函数图象经过x轴上一一定点.
其1正确的结论有______.(只需填写序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),直线y=kx-k2(k为常数,且k>0)与y轴交于点C,与抛物线y=ax2有唯一公共点B,点B在x轴上的正投影为点E,已知点D(0,4).
(1)求抛物线的解析式;
(2)是否存在实数k,使经过D,O,E三点的圆与抛物线的交点恰好为B?若存在,请求出时k的值;若不存在,请说明理由.
(3)如图(2),连接CE,已知点F(0,1),直线FA与CE相交于点M,不论k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF两个等式中有一个恒成立.请判断哪一个恒成立,并证明这个成立的结论.

查看答案和解析>>

同步练习册答案