精英家教网 > 初中数学 > 题目详情
2.如图,点A的函数y=$\frac{6}{x}$图象上一点,AB⊥x轴,垂足为B,则△AOB的面积是3.

分析 从反比例函数图象上任意找一点向某一坐标轴引垂线,加上它与原点的连线所构成的直角三角形面积等于|k|的一半.

解答 解:设A点坐标为(x,y),
∵AB⊥y轴,
∴OB=y,AB=x,
∴S△AOB=$\frac{1}{2}$×OB×AB=$\frac{1}{2}$xy,
∵y=$\frac{6}{x}$,
∴S△AOB=$\frac{1}{2}$×6=3.
故答案为3.

点评 本题考查了反比例函数y=$\frac{k}{x}$中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为 $\frac{1}{2}$|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.第1个等式:a1=$\frac{1}{1×3}=\frac{1}{2}×(1-\frac{1}{3})$;第2个等式:a2=$\frac{1}{3×5}=\frac{1}{2}×(\frac{1}{3}-\frac{1}{5})$;第3个等式:a3=$\frac{1}{5×7}=\frac{1}{2}×(\frac{1}{5}-\frac{1}{7})$;第4个等式:a4=$\frac{1}{7×9}=\frac{1}{2}×(\frac{1}{7}-\frac{1}{9})$;…
解答下列问题:
(1)按以上规律列出第5个等式,a5=$\frac{1}{9×11}$=$\frac{1}{2}$×($\frac{1}{9}$-$\frac{1}{11}$);
(2)用含n的代数式第n个等式:an=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$×($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)(n为正整数);
(3)求a1+a2+a3+a4+…+a2014的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,有若干张的边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.
(1)小明用硬纸片拼成的一个新的长方形如图,这个长方形的面积可表示为a2+3ab+2b2,也可表示为(a+2b)(a+b),则可得等式=a2+3ab+2b2=(a+2b)(a+b).
(2)如果现有小正方形①1张,大正方形③2张,长方形②3张,其中a≠2b.请你将它们拼成一个大长方形(画出图示),并运用面积之间的关系,将多项式a2+4ab+3b2分解因式.
(3)已知长方形②的周长为8,面积为1,求小正方形①与大正方形③的面积之和.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解不等式7x-2≤9x+2,把解集表示在数轴上,并求出不等式的负整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)知识再现
如图(1):若点A,B在直线l同侧,A,B到l的距离分别是3和2,AB=4,现在直线l上找一点P,使AP+BP的值最小,做法如下:
作点A关于直线l的对称点A′,连接BA′,与直线l的交点就是所求的点P,线段BA′的长度即为AP+BP的最小值,请你求出这个最小值.
(2)实践应用
①如图(2),⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°P是OB上一动点,则PA+PC的最小值是2$\sqrt{3}$
②如图(3),Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,$\sqrt{3}$),点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为$\sqrt{7}$
③如图(4),菱形ABCD中AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为$\sqrt{3}$
④如图(5),在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=$\sqrt{3}$,将△ACD沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是3+$\sqrt{3}$
(3)拓展延伸
如图(6):在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD,保留作图痕迹,不必写出作法.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.抛物线y=x2+bx+c与x轴交于点A(-1,0),B(3,0)两点,过点A的直线交抛物线于点C(2,m),交y轴于点D.
(1)求抛物线及直线AC的解析式;
(2)点P是线段AC上的一动点(点P与点A、C不重合),过点P作y轴的平行线交抛物线于点E,求线段PE长度的最大值;
(3)点M(m,-3)是抛物线上一点,问在直线AC上是否存在点F,使△CMF是等腰直角三角形?如果存在,请求出点F的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,平行四边形ABCD中,AC与BD相交于点O,猜想OA与BD的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,有A型、B型、C型三种不同的纸板,其中
A型:边长为a厘米的正方形;
B型:长为a厘米,宽为1厘米的长方形;
C型:边长为1厘米的正方形.
(1)现有A型2块,B型4块,C型4块,此时这10张纸板的总面积为多少平方厘米?
(2)从这10块纸板中拿掉1块A型纸板,剩下的纸板在不重叠的情况下,可以紧密的排出一个大正方形.则这个大正方形的边长为多少厘米?
(3)从这10块纸板中拿掉2块同类型的纸板,使得剩下的纸板在不重叠的情况下,可以紧密地排出两个相同的大正方形,请问拿掉的是2块哪种类型的纸板?此时大正方形的边长为多少厘米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程组:$\left\{\begin{array}{l}{\frac{3x+y}{2}-\frac{x-2y}{4}=1}\\{4(x+y)-5(x-y)=2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案