【题目】如图所示,制作一种产品的同时,需要将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟,据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热.停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.
(1)分别求出该材料加热过程中和停止加热后y与x之间的函数表达式,并写出x的取值范围;
(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?
【答案】(1)y=9x+15(0≤x≤5),y=(x≥5);(2)分钟.
【解析】
(1)确定两个函数后,找到函数图象经过的点的坐标,用待定系数法求得函数的解析式即可;
(2)分别令两个函数的函数值为30,解得两个x的值相减即可得到答案.
(1)设加热过程中一次函数表达式为y=kx+b(k≠0),该函数图象经过点(0,15),(5,60),∴,解得:,∴一次函数的表达式为y=9x+15(0≤x≤5),设加热停止后反比例函数表达式为y(a≠0),该函数图象经过点(5,60),即60,解得:a=300,所以反比例函数表达式为y(x≥5);
(2)由题意得:,解得:x1,解得:x2=10,则x2﹣x1=10,所以对该材料进行特殊处理所用的时间为分钟.
科目:初中数学 来源: 题型:
【题目】已知抛物线经过点A(-2,-8).
(1)求此抛物线的解析式;
(2)判断点B(-1,-4)是否在此抛物线上;
(3)求此抛物线上纵坐标为-6的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小红家的阳台上放置了一个晒衣架如图①.图②是晒衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点立于地面.经测量:AB=CD=136 cm,OA=OC=51 cm,OE=OF=34 cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32 cm.垂挂在衣架上的连衣裙总长度小于________cm时,连衣裙才不会拖落到地面上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据题意,在横线上写出相应的函数关系式,并判断y是否为x的反比例函数(“是”就在后面的空格内打“1”,“不是”就在后面的空格内打“0”):
(1)长方形的面积S(cm2)一定,它的长y(cm)与宽x(cm)之间的关系式为 ________ .
(2)正方形的对角线长y(cm)与它的边长x(cm)之间的关系式为 ________ .
(3)一种商品的单价为a(元/件),所花费的钱数y(元)与购买的件数x(件)的关系式为 ________ .
(4)小明的家与学校相距2400m,他骑自行车上学的速度v(m/s)与所需时间t(s)的关系式为 ________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是⊙O的内接四边形,AC为直径,点B是弧AC的中点,若AC=7,BD=6,则由四个弓形组成的阴影部分的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P于D、E,过点E作EF⊥CE交CB的延长线于F.
(1)求证:BC是⊙P的切线;
(2)若CD=2,CB=2,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2:1,已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.设制作这面镜子的总费用是元,镜子的宽是米.
(1)求与之间的关系式.
(2)如果制作这面镜子共花了195元,求这面镜子的长和宽.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com