精英家教网 > 初中数学 > 题目详情
二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则正确的结论是(  )
A.abc>0B.3a +c<0C.4a+2b+c<0D.b2 -4ac<0
B.

试题分析:根据二次函数的图象开口向下推出a<0,根据二次函数的图形与y轴的交点在y轴的正半轴上推出c>0,根据二次函数的图象的对称轴是直线x=1得出 =1,求出b=-2a>0,把x=-1代入y=ax2+bx+c(a≠0)得出y=a-b+c<0,根据二次函数的图象与x轴有两个交点推出b2-4ac>0,根据以上结论推出即可.A、∵二次函数的图象开口向下,
∴a<0,
∵二次函数的图形与y轴的交点在Y轴的正半轴上,
∴c>0,
∵二次函数的图象的对称轴是直线x=1,
 =1,
b=-2a>0,
∴abc<0,故本选项错误;
B、把x=-1代入y=ax2+bx+c(a≠0)得:y=a-b+c<0,
∴a+c<b,即a+c<-2a,∴3a+c<0,故本选项正确;
C、∵二次函数的图象的对称轴是直线x=1,
=1,b=-2a.
∴4a+2b+c=4a+2(-2a)+c=c>0,故本选项错误;
D、∵二次函数的图象与x轴有两个交点,
∴b2-4ac>0,故本选项错误;
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

请写出一个图象为开口向下,并且与轴交于点的二次函数表达式     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知直线与y轴交于点A,抛物线经过点A,其顶点为B,另一抛物线的顶点为D,两抛物线相交于点C

(1)求点B的坐标,并说明点D在直线的理由;
(2)设交点C的横坐标为m
①交点C的纵坐标可以表示为:        或        ,由此请进一步探究m关于h的函数关系式;
②如图2,若,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为米,面积为平方米.(注:的近似值取3)

(1)求出的函数关系式,并写出自变量的取值范围;
(2)当半径为何值时,扇形花坛的面积最大,并求面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

关于二次函数y=x2-4x+3,下列说法错误的是(        )
A.当x<1时,y随x的增大而减小B.它的图象与x轴有交点
C.当1<x<3时,y>0D.顶点坐标为(2,-1 )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将二次函数的图像向左平移2个单位再向下平移4个单位,所得函数表达式是,我们来解释一下其中的原因:不妨设平移前图像上任意一点P经过平移后得到点P’,且点P’的坐标为,那么P’点反之向右平移2个单位,再向上平移4个单位得到点,由于点P是二次函数的图像上的点,于是把点P(x+2,y+4)的坐标代入再进行整理就得到.类似的,我们对函数的图像进行平移:先向右平移1个单位,再向上平移3个单位,所得图像的函数表达式为_____.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是(  )
A.a<0 B.a﹣b+c<0
C.>1D.4ac﹣b2<﹣8a

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线与双曲线的交点A的横坐标是1,则关于的不等式的解集是(    )
A.x>1B.x<1C.0<x<1D.-1<x<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的最小值是           

查看答案和解析>>

同步练习册答案