分析 (1)由AAS证明△ABD≌△CAE,得到BD=AE,AD=CE,即可解决问题.
(2)由AAS证明证明△ABD≌△CAE,得出BD=AE,AD=CE,即可得出结论.
解答 (1)证明:∵∠BAC=90°,BD⊥DE,CE⊥DE,
∴∠DAB+∠DBA=∠DAB+∠EAC,
∴∠DBA=∠EAC;
在△ABD与△CAE中,$\left\{\begin{array}{l}{∠DBA=∠EAC}&{\;}\\{∠BDA=∠AEC}&{\;}\\{AB=AC}&{\;}\end{array}\right.$,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∴DE=BD+CE.
(2)解:CE=BD+DE;理由如下:
同(1)得:∠ABD=∠CAE,
在△ABD和△CAE中,$\left\{\begin{array}{l}{∠ABD=∠CAE}&{\;}\\{∠ADB=∠CEA}&{\;}\\{AB=AC}&{\;}\end{array}\right.$,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∵AD=AE+DE,
∴CE=BD+DE.
点评 该题主要考查了全等三角形的判定及其性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com