【题目】已知:二次函数y=﹣x2+bx+c的图象过点(﹣1,﹣8),(0,﹣3).
(1)求此二次函数的表达式,并用配方法将其化为y=a(x﹣h)2+k的形式;
(2)用五点法画出此函数图象的示意图.
【答案】
(1)解:把(﹣1,﹣8),(0,﹣3)代入y=﹣x2+bx+c得: ,
解得: ,
∴二次函数的表达式为:y=﹣x2+4x﹣3,
y=﹣x2+4x﹣3=﹣(x﹣2)2+1
(2)解:顶点(2,1),
当y=0时,﹣x2+4x﹣3=0,
x2﹣4x+3=0,
(x﹣1)(x﹣3)=0,
x1=1,x2=3,
∴与x轴交点为(1,0)、(3,0),
列表如下:
【解析】(1)把已知两点(﹣1,﹣8),(0,﹣3)代入二次函数的解析式求出b和c的值,再配方成顶点式;(2)写出顶点坐标,计算其与x轴的交点和与y轴的交点,列表、描点,画出图象.
【考点精析】本题主要考查了二次函数的图象的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】已知:抛物线y=x2+(b﹣1)x﹣5.
(1)写出抛物线的开口方向和它与y轴交点的坐标;
(2)若抛物线的对称轴为直线x=1,求b的值,并画出抛物线的草图(不必列表);
(3)如图,若b>3,过抛物线上一点P(﹣1,c)作直线PA⊥y轴,垂足为A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列关系式不正确的是( )
A.abc<0
B.a+b+c<0
C.2a﹣b>0
D.4a﹣b+c<0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,航空母舰始终以40千米/时的速度由西向东航行,飞机以800千米/时的速度从舰上起飞,向西航行执行任务,如果飞机在空中最多能连续飞行4个小时,那么它在起飞_____小时后就必须返航,才能安全停在舰上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从表可知,
①抛物线与x轴的交点为;
②抛物线的对称轴是;
③函数y=ax2+bx+c的最大值为;
④x , y随x增大而增大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把两个含有45°角的直角三角板ACB和DEC如图放置,点A,C,E在同一直线上,点D在BC上,连接BE,AD,AD的延长线交BE于点F.
(1)求证:△ADC≌△BEC;
(2)猜想AD与EB是否垂直?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.
(1)如图1,若AB=AC,∠DBA=60°,AD=7 ,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;
(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP;
(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com