精英家教网 > 初中数学 > 题目详情
如图所示,在凸四边形ABCD中,∠ABD>∠CBD,∠ADB>∠CDB.求证:AB+AD>BC+CD.
分析:如图,过顶点B作∠EBD=∠CBD,BE=BC,连接ED,延长BE交AD于点F.构造全等三角形:△BCD≌△BED(SAS),则对应边ED=CD,故根据三角形三边关系得到:AB+AD=AB+AF+FD>BF+FD=BE+EF+FD>BE+ED,即AB+AD>BC+CD.
解答:证明:∵∠ABD>∠CBD,∠ADB>∠CDB,
∴如图,过顶点B作∠EBD=∠CBD,BE=BC,连接ED,延长BE交AD于点F.
∵在△BCD与△BED中,
BE=BC
∠EBD=∠CBD
BD=BD

∴△BCD≌△BED(SAS),
∴ED=CD,
∴AB+AD=AB+AF+FD>BF+FD=BE+EF+FD>BE+ED,即AB+AD>BC+CD.
点评:本题考查了全等三角形的判定与性质、三角形的三边关系.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图所示,在凸四边形ABCD中,已知∠BAC=25°,∠BCA=20°,∠BDC=50°,∠BDA=40°,若四边形对角线AC、BD相交于点P,求∠CPD的度数.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如图所示,⊙1与⊙2相交于A、B,顺次连结O1,A,O2,B四点,得四边形O1AO2B。
(1)根据我们学习矩形、菱形、正方形性质时所获得的经验,探求图中的四边形有哪些性质?(用文字语言写出4条性质)
性质1:____;性质2:____ ;
性质3:____;性质4:____ ;
(2)设⊙O1的半径为R,⊙O2的半径为r(R>r),O1、O2的距离为d,当d变化时,四边形O1AO2B的形状也会发生变化,要使四边形O1AO2B是凸四边形(把四边形的任一边向两方延长,其他各边都在延长所得直线同一旁的四边形),则d的取值范围是_________。

查看答案和解析>>

同步练习册答案