精英家教网 > 初中数学 > 题目详情

【题目】如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.

(1)若AD=3 ,BE=4,求EF的长;
(2)求证:CE= EF;
(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.

【答案】
(1)

解:∵∠AED=90°,AE=DE,AD=3

∴AE=DE=3,

在Rt△BDE中,

∵DE=3,BE=4,

∴BD=5,

又∵F是线段BD的中点,

∴EF= BD=2.5


(2)

解:如图1,连接CF,线段CE与FE之间的数量关系是CE= FE;

解法1:∵∠AED=∠ACB=90°

∴B、C、D、E四点共圆

且BD是该圆的直径,

∵点F是BD的中点,

∴点F是圆心,

∴EF=CF=FD=FB,

∴∠FCB=∠FBC,∠ECF=∠CEF,

由圆周角定理得:∠DCE=∠DBE,

∴∠FCB+∠DCE=∠FBC+∠DBE=45°

∴∠ECF=45°=∠CEF,

∴△CEF是等腰直角三角形,

∴CE= EF.

解法2:∵∠BED=∠AED=∠ACB=90°,

∵点F是BD的中点,

∴CF=EF=FB=FD,

∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,

∴∠DFE=2∠ABD,

同理∠CFD=2∠CBD,

∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,

即∠CFE=90°,

∴CE= EF.


(3)

解:解法1:如图2﹣1,连接CF,延长EF交CB于点G,

∵∠ACB=∠AED=90°,

∴DE∥BC,

∴∠EDF=∠GBF,

在△EDF和△GBF中,

∴△EDF≌△GBF,

∴EF=GF,BG=DE=AE,

∵AC=BC,

∴CE=CG,

∴∠EFC=90°,CF=EF,

∴△CEF为等腰直角三角形,

∴∠CEF=45°,

∴CE= FE;

解法2:如图2﹣2,连结CF、AF,

∵∠BAD=∠BAC+∠DAE=45°+45°=90°,

又∵点F是BD的中点,

∴FA=FB=FD,

在△ACF和△BCF中,

∴△ACF≌△BCF,

∴∠ACF=∠BCF= ∠ACB=45°,

∵FA=FB,CA=CB,

∴CF所在的直线垂直平分线段AB,

同理,EF所在的直线垂直平分线段AD,

又∵DA⊥BA,

∴EF⊥CF,

∴△CEF为等腰直角三角形,

∴CE= EF.


【解析】(1)由AE=DE,∠AED=90°,AD=3 ,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF= BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF= EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.
【考点精析】认真审题,首先需要了解图形的旋转(每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素),还要掌握旋转的性质(①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是2015年12月月历.

(1)如图,用一正方形框在表中任意框往4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是

(2)在表中框住四个数之和最小记为a1,和最大记为a2,则a1+a2=

(3)当(1)中被框住的4个数之和等于76时,x的值为多少?

(4)在(1)中能否框住这样的4个数,它们的和等于92?若能,则求出x的值;若不能,则说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是正方形ABCD的边BC上的任意一点,连接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求证:DE=BF+EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角△ABC中,∠A=90°,∠B=30°,AC=4,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分的面积是(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市自来水公司为了鼓励市民节约用水,采取分段收费标准. 若某户居民每月应缴水费y(元)与用水量x(吨)的函数图象如图所示,

(1)分别写出x≤5x>5的函数解析式;

(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准;

(3)若某户居民六月交水费31元,则用水多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,李老师出示了如下框中的题目.

如图1,在∠AOB的内部有一条射线OC把∠AOB分成两个角,射线OM、ON分别平分∠AOC、BOC,试探究∠MON与∠AOB之间的数量关系,并说明理由.

小敏与同桌小聪讨论后,进行了如下解答:

(1)特殊情况,探索结论:

①请你在下表中填上当∠AOB60°、90°、120°时∠MON的大小:

AOB的度数

60°

90°

120°

MON的度数

   

   

   

②探索发现:无论∠AOB的度数是多少,∠MON与∠AOB的数量关系是不变的,请你直接写出结论:

MON   AOB.

(2)特例启发,解答题目:

如图2,如果∠AOB=α,请你求∠MON的大小(用α表示).

(3)拓展结论,设计新题:

如图3,把一张报纸的一角斜折过去,使A点落在E点处,BC为折痕,BD是∠EBM的平分线,求∠CBD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列算式,你发现了什么规律?

12=;12+22=;12+22+32=;12+22+32+42=;…

①根据你发现的规律,计算下面算式的值;12+22+32+42+52=____________

②请用一个含n的算式表示这个规律:12+22+32…+n2=___________

③根据你发现的规律,计算下面算式的值:512+522+…+992+1002=____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为AB上一点,△ACE≌△BCD,AD2+DB2=DE2,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了我最想选的一门课调查,并将调查结果绘制成如图统计图表(不完整)

选修课

A

B

C

D

E

F

人数

20

30

根据图标提供的信息,下列结论错误的是(

A. 这次被调查的学生人数为200 B. 扇形统计图中E部分扇形的圆心角为72°

C. 被调查的学生中最想选F的人数为35 D. 被调查的学生中最想选D的有55

查看答案和解析>>

同步练习册答案