A. | 100米 | B. | 150米 | C. | 200米 | D. | 300米 |
分析 因为拱门是抛物线形,所以符合抛物线的性质,以CD的中垂线为y轴,CD所在的直线为x轴,可列出含有未知量的抛物线解析式,由A、B的坐标可求出抛物线的解析式,然后就变成求抛物线的顶点坐标的问题.
解答 解:如图所示建立平面直角坐标系(以CD所在的直线为x轴,CD的垂直平分线为y轴建立直角坐标系),
此时,抛物线与x轴的交点为C(-100,0),D(100,0),
设这条抛物线的解析式为y=a(x-100)(x+100),
∵抛物线经过点B(50,150),
可得 150=a(50-100)(50+100).
解得 a=-$\frac{1}{50}$,
∴y=-$\frac{1}{50}$(x-100)(x+100).
即 抛物线的解析式为y=-$\frac{1}{50}$x2+200
顶点坐标是(0,200)
∴拱门的最大高度为200米,
故选C.
点评 此题考查的二次函数在实际生活中的应用,根据题意正确的建立坐标轴可使问题简单化,数形结合,是一道基础题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com