6£®ÏÈÑéÖ¤ÏÂÁнáÂÛµÄÕýÈ·ÐÔ£º
¢Ù·½³Ìx-$\frac{1}{x}$=2-$\frac{1}{2}$µÄ¸ùÊÇx1=2£¬x2=-$\frac{1}{2}$£»
¢Ú·½³Ìx-$\frac{1}{x}$=3Ò»$\frac{1}{3}$µÄ¸ùÊÇx1=3£¬x2=-$\frac{1}{3}$£»
¢Û·½³Ìx-$\frac{1}{x}$=3+$\frac{3}{4}$µÄ¸ùÊÇx1=4£¬x2=-$\frac{1}{4}$£»
¢Ü·½³Ìx-$\frac{1}{x}$=4+$\frac{4}{5}$µÄ¸ùÊÇx1=5£¬x2=-$\frac{1}{5}$£®
ÔÙ¹Û²ìÉÏÊö·½³Ì¼°Æä¸ùµÄÌØÕ÷£¬²ÂÏë·½³Ìx-$\frac{1}{x}$=8$\frac{8}{9}$µÄ¸ùÊÇʲô£¬²¢ÑéÖ¤ÄãµÄ²ÂÏ룮

·ÖÎö °Ñ·½³ÌµÄ¸ù·Ö±ð´úÈë·½³Ì¼´¿ÉÑéÖ¤£»
¸ù¾Ý´ø·ÖÊýµÄ·Öĸд³ö·½³ÌµÄ¸ù£¬È»ºó½â·Öʽ·½³ÌÑéÖ¤¼´¿É£®

½â´ð ½â£º¢Ùx1=2ʱ£¬×ó±ß=2-$\frac{1}{2}$£¬×ó±ß=Óұߣ¬
x2=-$\frac{1}{2}$ʱ£¬×ó±ß=-$\frac{1}{2}$-$\frac{1}{-\frac{1}{2}}$=2-$\frac{1}{2}$£¬×ó±ß=Óұߣ»
¢Úx1=3ʱ£¬×ó±ß=3-$\frac{1}{3}$£¬×ó±ß=Óұߣ¬
x2=-$\frac{1}{3}$ʱ£¬×ó±ß=-$\frac{1}{3}$-$\frac{1}{-\frac{1}{3}}$=3-$\frac{1}{3}$£¬×ó±ß=Óұߣ»
¢Ûx1=4ʱ£¬×ó±ß=4-$\frac{1}{4}$=3+$\frac{3}{4}$£¬×ó±ß=Óұߣ¬
x2=-$\frac{1}{4}$ʱ£¬×ó±ß=-$\frac{1}{4}$-$\frac{1}{-\frac{1}{4}}$=4-$\frac{1}{4}$=3+$\frac{3}{4}$£¬×ó±ß=Óұߣ»
¢Üx1=5ʱ£¬×ó±ß=5-$\frac{1}{5}$=4+$\frac{4}{5}$£¬×ó±ß=Óұߣ¬
x2=-$\frac{1}{5}$ʱ£¬×ó±ß=-$\frac{1}{5}$-$\frac{1}{-\frac{1}{5}}$=5-$\frac{1}{5}$=4+$\frac{4}{5}$£¬×ó±ß=Óұߣ»
²ÂÏ룺·½³Ìx-$\frac{1}{x}$=8$\frac{8}{9}$µÄ¸ùÊÇx1=9£¬x2=-$\frac{1}{9}$£»
ÑéÖ¤£º·½³ÌÁ½±ß¶¼³ËÒÔ9xµÃ£¬9x2-9-80x=0£¬
£¨x-9£©£¨9x+1£©=0£¬
x-9=0£¬9x+1=0£¬
ËùÒÔ£¬x1=9£¬x2=-$\frac{1}{9}$£®

µãÆÀ ±¾Ì⿼²éÁË·Öʽ·½³ÌµÄ½â£¬¶Á¶®ÌâÄ¿ÐÅÏ¢£¬¹Û²ì³ö·½³ÌµÄ½âÓë´ø·ÖÊýµÄ·ÖĸµÄ¹ØϵÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª¡ÑOÍâÒ»µãAµ½Ô²µÄ×î´ó¾àÀëΪ18cm£¬µ½Ô²µÄ×îС¾àÀëΪ8cm£¬ÔòÕâ¸öÔ²µÄ°ë¾¶Îª£¨¡¡¡¡£©
A£®4cmB£®5cmC£®8cmD£®9cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬Rt¡÷ABOÖУ¬¡÷AOB=90¡ã£¬µãAÔÚµÚÒ»ÏóÏÞ¡¢µãBÔÚµÚËÄÏóÏÞ£¬ÇÒAO£ºBO=1£º$\sqrt{2}$£¬ÈôÒÑÖªµãAÔÚË«ÇúÏßy=$\frac{1}{x}$ÉÏ£¬µãBÔÚË«ÇúÏßy=$\frac{k}{x}$ÉÏ£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬BC=4£¬AB=10£¬µãDÊÇABÉϵÄÒ»µã£¬½«¡÷DBCÑØ×ÅCDÕÛµþ£¬´ËʱµãBÓëµãEÖغϣ¬Á¬½ÓAE£¬µ±DΪABµÄÖеãʱ£¬AE=$\frac{34}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®µãB£¬C£¬EÔÚͬһֱÏßÉÏ£¬µãA£¬DÔÚÖ±ÏßCEͬ²à£¬AB=AC£¬EC=ED£¬¡ÏBAC=¡ÏCED=70¡ã£¬Ö±ÏßAE£¬BD½»ÓÚµãF£®
£¨1£©Èçͼ£¨1£©£¬ÇóÖ¤£º¡÷BCD¡×¡÷ACE£¬²¢Çó¡ÏAFBµÄ¶ÈÊý£»
£¨2£©Èçͼ£¨1£©Öеġ÷ABCÈƵãCÐýתһ¶¨½Ç¶È£¬µÃͼ£¨2£©£¬Çó¡ÏAFBµÄ¶ÈÊý£»
£¨3£©ÍØÕ¹£ºÈçͼ£¨3£©£¬¾ØÐÎABCDºÍ¾ØÐÎDEFGÖУ¬AB=1£¬AD=ED=$\sqrt{3}$£¬DG=3£¬Ö±ÏßAG£¬BF½»ÓÚµãH£¬ÇëÖ±½Óд³ö¡ÏAHBµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èô¹ØÓÚxµÄ·½³Ìx+$\frac{2}{x}$=c+$\frac{2}{c}$µÄ¸ùΪx1=c£¬x2=$\frac{2}{c}$£¬Ôò¹ØÓÚxµÄ·½³Ìx+$\frac{2}{x-1}$=a+$\frac{2}{a-1}$µÄ¸ùÊÇ£¨¡¡¡¡£©
A£®x1=a£¬x2=$\frac{2}{a-1}$B£®x1=a-1£¬x2=$\frac{2}{a-1}$C£®x1=a£¬x2=$\frac{a+1}{a-1}$D£®x1=a£¬x2=$\frac{a}{a-1}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁи÷×éÊý¿ÉÒÔ¹¹³ÉÖ±½ÇÈý½ÇÐεÄÒ»×éÊÇ£¨¡¡¡¡£©
A£®3  5  6B£®2  3  4C£®6  7  9D£®1.5  2  2.5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬AB=AC£¬AD¡ÍBC£¬BFƽ·Ö¡ÏABC£¬½»ADÓÚE£¬FG¡ÎAD£®
£¨1£©ÇóÖ¤£ºAE=AF£»
£¨2£©ÊÔÅжÏDE¡¢FGÓëCDµÄÊýÁ¿¹Øϵ²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬BC=1£¬½«¾ØÐÎABCDÈƵãDÄæʱÕëÐýת45¡ã£¬µÃµ½¾ØÐÎA¡äB¡äC¡äD¡ä£¬µãB¡äÇ¡ºÃÂäÔÚBCµÄÑÓ³¤ÏßÉÏ£¬±ßA¡äB¡ä½»±ßCDÓÚµãE£®
£¨1£©ÇóÖ¤£ºB¡äC=BC£®
£¨2£©±£³Ö¾ØÐÎA¡äB¡äC¡äD¡ä²»¶¯£¬½«¾ØÐÎABCDÑØÉäÏßBB¡ä·½ÏòÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈƽÒÆ£¬ÉèƽÒÆʱ¼äΪtÃ룮
¢Ùµ±¾ØÐÎABCDÓë¾ØÐÎA¡äB¡äC¡äD¡äÖصþ²¿·ÖΪËıßÐÎʱ£¬ÇóÖصþ²¿·ÖµÄÃæ»ýΪSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£®
¢ÚµãA¡ä¹ØÓÚABµÄ¶Ô³Æµã¼Ç×÷µãF£¬Ö±½Óд³öÖ±ÏßDFÓë¾ØÐÎA¡äB¡äC¡äD¡äµÄ±ßƽÐÐʱtµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸