【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
【答案】(1)y=2x﹣5,y=;(2)(2.5,0).
【解析】(1)利用待定系数法即可解答;
(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.
(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,
∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),
把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.
(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),
∵MB=MC,∴
解得:x=2.5,∴点M的坐标为(2.5,0).
“点睛”本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.
科目:初中数学 来源: 题型:
【题目】某中学为了了解2018年度下学期七年级数学学科期末考试各分数段成绩的分布情况,从全校七年级1200名学生中随机抽取了200名学生的期末数学成绩进行调查,在这次调查中,样本是( )
A. 1200名学生 B. 200名学生
C. 1200名学生的期末数学成绩 D. 200名学生的期末数学成绩
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是40cm.求:
(1)两条对角线AC、BD的长度;
(2)菱形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;
(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是( )
A. (x+2)2=1B. (x﹣2)2=1C. (x+2)2=9D. (x﹣2)2=9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com