精英家教网 > 初中数学 > 题目详情

【题目】教材呈现:下图是华师版八年级下册数学教材第11页的部分内容.

1,如图,在菱形中,,试求的大小,并说明是等边三角形

问题解决:请结合图(1),写出例1的完整解答过程;

问题探究:在菱形中,对角线相交于点,过点DBC的延长线于点E

1)如图2,连接OE,则OE的长为____________

2)如图3,若点P是对角线BD上一动点,连结,的最小值为____________

【答案】问题解决:见解析;问题探究:(1;(2

【解析】

问题解决:根据菱形的性质证明∠ABC=60°即可得证;

问题探究:(1)证明四边形ACED是边长为4的菱形,可得三角形ODE为直角三角形,利用勾股定理即可算出OE的长度;

2)根据将军饮马问题,可知的最小值即为AE的长度;

问题解决:

因为四边形ABCD是菱形,所以

因为

所以

因为四边形ABCD是菱形,

所以是等边三角形;

问题探究:

1)因为四边形ABCD是菱形,所以

又因为,所以四边形ACED为平行四边形,由(1)可知AB=AC=AD,所以四边形ACED为菱形,且∠ADE=120°DE=4,又由菱形的性质可知,∠ADO=30°ACBD,所以,∠ODE=120°-30°=90°,利用勾股定理可得

2)根据将军饮马问题,C点关于BD的对称点为A点,连接AEAE即为的最小值,过ABE的垂线交BEF,如下图,因为三角形ABC为等边三角形,所以FE=6,根据勾股定理可知

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线yx2+bx+cx轴交于点A(4,﹣5)

1)如图,过点A分别向x轴、y轴作垂线,垂足分别为BC,得到矩形ABOC,且抛物线经过点C

①求抛物线的解析式.

②将抛物线沿直线xm2m0)翻折,分别交线段OBACDE两点.若直线DE刚好平分矩形ABOC的面积,求m的值.

2)将抛物线旋转180°,使点A的对应点为A1(m2n4),其中m≤2.若旋转后的抛物线仍然经过点A,求旋转后的抛物线顶点所能达到最低点时的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,AC是⊙O的切线,∠ABC=52°BC交⊙O于点DEAB上一点,延长DE交⊙O于点F

(Ⅰ)如图①,连接BF,求∠C和∠DFB的大小;

(Ⅱ)如图②,当DB=DE时,求∠OFD的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在矩形ABCD中,AB6BC9,点EBC边上一动点,连接AEDE ,作△ECD的外接⊙O,交AD于点F,交AE于点G,连接FG

1)求证△AFG∽△AED

2)当BE的长为 时,△AFG为等腰三角形;

3)如图②,若BE1,求证:AB与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC90°,ABAC,点D为直线BC上一动点(点D不与BC重合),以AD为腰作等腰直角三角形DAF,使∠DAF90°,连接CF

1)观察猜想

如图1,当点D在线段BC上时,

①CFBC的位置关系为   

②CFDCBC之间的数量关系为   (直接写出结论);

2)数学思考

如图2,当点D在线段CB的延长线上时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

3)拓展延伸

如图3,当点D在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CDBCAC2,请求出线段CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是反比例函数(k≠0)图象上的两点,延长线段ABy轴于点C,且B为线段AC的中点,过点AADx轴于点DE为线段OD的三等分点,且OEDE.连接AEBE.若SABE7,则k的值为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,矩形的顶点1,0),0,2),点在第一象限,轴,若函数的图象经过矩形的对角线的交点,则的值为(

A.4B.5C.8D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点为双曲线上的一点,过点轴、轴的垂线,分别交直线于点两点(点在点下方.若直线轴交于点,与轴相交于点,则的值为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:

(1)在这次调查中,一共调查了 名市民,扇形统计图中,C组对应的扇形圆心角是 °;

(2)请补全条形统计图;

(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.

查看答案和解析>>

同步练习册答案