2£®Èçͼ£¬µãA¡¢µãEµÄ×ø±ê·Ö±ðΪ £¨0£¬3£©Ó루1£¬2£©£¬ÒÔµãAΪ¶¥µãµÄÅ×ÎïÏß¼ÇΪC1£ºy1=-x2+n£»ÒÔEΪ¶¥µãµÄÅ×ÎïÏß¼ÇΪC2£ºy2=ax2+bx+c£¬ÇÒÅ×ÎïÏßC2ÓëyÖá½»ÓÚµãP£¨0£¬$\frac{5}{2}$£©£®
£¨1£©·Ö±ðÇó³öÅ×ÎïÏßC1ºÍC2µÄ½âÎöʽ£¬²¢ÅжÏÅ×ÎïÏßC1»á¾­¹ýµãEÂð£¿
£¨2£©ÈôÅ×ÎïÏßC1ºÍC2ÖеÄy¶¼ËæxµÄÔö´ó¶ø¼õС£¬ÇëÖ±½Óд³ö´ËʱxµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄxµÄÈ¡Öµ·¶Î§ÄÚ£¬Éèеĺ¯Êýy3=y1-y2£¬Çó³öº¯Êýy3ÓëxµÄº¯Êý¹Øϵʽ£»Îʵ±xΪºÎֵʱ£¬º¯Êýy3ÓÐ×î´óÖµ£¬Çó³öÕâ¸ö×î´óÖµ£®

·ÖÎö £¨1£©´ý¶¨ÏµÊý·¨·Ö±ðÇó½â¿ÉµÃ£¬ÔÙÇó³öx=1ʱ£¬y1µÄÖµ¼´¿ÉÅжÏÅ×ÎïÏßC1ÊÇ·ñ¾­¹ýµãE£»
£¨2£©·Ö±ðÇó³öÁ½º¯ÊýyËæxµÄÔö´ó¶ø¼õСʱxµÄ·¶Î§¿ÉµÃ´ð°¸£»
£¨3£©½«y1¡¢y2´úÈëy3=y1-y2ÕûÀí³ÉÒ»°ãʽ£¬ÔÙÅä·½³É¶¥µãʽ¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⽫µãA£¨0£¬3£©´úÈëy1=-x2+n£¬µÃ£ºn=3£¬
¡ày1=-x2+3£»
¡ßÅ×ÎïÏßC2µÄ¶¥µã×ø±êΪ£¨1£¬2£©£¬
¡àÉèÅ×ÎïÏßC2µÄ½âÎöʽΪy=a£¨x-1£©2+2£¬
½«µãP£¨0£¬$\frac{5}{2}$£©´úÈ룬µÃ£ºa+2=$\frac{5}{2}$£¬
½âµÃ£ºa=$\frac{1}{2}$£¬
¡àÅ×ÎïÏßC2µÄ½âÎöʽΪy2=$\frac{1}{2}$£¨x-1£©2+2=$\frac{1}{2}$x2-x+$\frac{5}{2}$£¬
µ±x=1ʱ£¬y1=-12+3=2£¬
¡àÅ×ÎïÏßC1¾­¹ýµãE£»

£¨2£©ÔÚy1=-x2+3£¬µ±x£¾0ʱ£¬yËæxµÄÔö´ó¶ø¼õС£¬
ÔÚy2=$\frac{1}{2}$£¨x-1£©2+2ÖУ¬µ±x£¼1ʱ£¬yËæxµÄÔö´ó¶ø¼õС£¬
¡àµ±0£¼x£¼1ʱ£¬Å×ÎïÏßC1ºÍC2ÖеÄy¶¼ËæxµÄÔö´ó¶ø¼õС£»

£¨3£©y3=y1-y2=-x2+3-£¨$\frac{1}{2}$x2-x+$\frac{5}{2}$£©=-$\frac{3}{2}$x2+x+$\frac{1}{2}$=-$\frac{3}{2}$£¨x-$\frac{1}{3}$£©2+$\frac{2}{3}$£¬
¡ß0£¼x£¼1£¬
¡àµ±x=$\frac{1}{3}$ʱ£¬º¯Êýy3ÓÐ×î´óÖµ£¬×î´óֵΪ$\frac{2}{3}$£®

µãÆÀ ´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ¼°¶þ´Îº¯ÊýµÄÐÔÖÊ£¬ÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨ºÍ¶þ´Îº¯ÊýµÄÔö¼õÐÔÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª¡÷ABCµÄÈý±ß³¤·Ö±ðΪa£¬b£¬c£®
£¨1£©Èôa£¬b£¬cÂú×㣨a-b£©2+£¨b-c£©2=0£¬ÊÔÅжϡ÷ABCµÄÐÎ×´£»
£¨2£©Èôa=5£¬b=2£¬ÇÒcΪÕûÊý£¬Çó¡÷ABCµÄÖܳ¤µÄ×î´óÖµ¼°×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬Ð£Ô°ÄÚÓÐÒ»¿ÃÓëµØÃæ´¹Ö±µÄÊ÷£¬ÊýѧÐËȤС×éÁ½´Î²âÁ¿ËüÔÚµØÃæÉϵÄÓ°×Ó£¬µÚÒ»´ÎÊÇÑô¹âÓëµØÃæ³É60¡ã½Çʱ£¬µÚ¶þ´ÎÊÇÑô¹âÓëµØÃæ³É30¡ã½Çʱ£¬Á½´Î²âÁ¿µÄÓ°³¤Ïà²î8Ã×£¬ÇóÊ÷¸ßAB¶àÉÙÃ×£®£¨½á¹û±£Áô¸ùºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÏÂÁÐ˵·¨ÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Õý·ÖÊýºÍ¸º·ÖÊýͳ³ÆΪ·ÖÊýB£®0¼ÈÊÇÕûÊýÒ²ÊǸºÕûÊý
C£®ÕýÕûÊý¡¢¸ºÕûÊýͳ³ÆΪÕûÊýD£®ÕýÊýºÍ¸ºÊýͳ³ÆΪÓÐÀíÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÏÈÔĶÁ£¬ÔÙ½â´ð£º
ÓÉ$£¨\sqrt{3}-\sqrt{2}£©£¨\sqrt{3}+\sqrt{2}£©=£¨\sqrt{3}£©^{2}-£¨\sqrt{2}£©^{2}=1$¿ÉÒÔ¿´³ö£¬½á¹ûÖв»º¬Óжþ´Î¸ùʽ£®ÈôÁ½¸öº¬Óжþ´Î¸ùʽµÄ´úÊýʽÏà³Ë£¬»ý²»º¬Óжþ´Î¸ùʽ£¬Ôò³ÆÕâÁ½¸ö´úÊýʽ»¥ÎªÓÐÀí»¯Òòʽ£®
ÔÚ½øÐжþ´Î¸ùʽ¼ÆËãʱ£¬ÀûÓÃÓÐÀí»¯Òòʽ£¬ÓÐʱ¿ÉÒÔ»¯È¥·ÖĸÖеĸùºÅ£®
ÀýÈ磺
$\frac{1}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{3}+\sqrt{2}}{£¨\sqrt{3}-\sqrt{2}£©£¨\sqrt{3}+\sqrt{2}£©}$=$\frac{\sqrt{3}+\sqrt{2}}{£¨\sqrt{3}£©^{2}-£¨\sqrt{2}£©^{2}}$=$\sqrt{3}+\sqrt{2}$
ÉÏÊö¹ý³Ì£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©$\sqrt{3}$µÄÓÐÀí»¯ÒòʽÊÇ$\sqrt{3}$£¬$\sqrt{2}+1$µÄÓÐÀí»¯ÒòʽÊÇ$\sqrt{2}-1$
£¨2£©»¯È¥ÏÂÁÐʽ×Ó·ÖĸÖеĸùºÅ£º$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$£¬$\frac{3}{3+\sqrt{6}}$=3-$\sqrt{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¼ÆËã
£¨1£©$\sqrt{18}$-$\sqrt{32}$+$\sqrt{2}$
£¨2£©$\frac{\sqrt{27}-\sqrt{12}}{\sqrt{3}}$
£¨3£©$\sqrt{\frac{1}{6}}$+$\sqrt{24}$-$\sqrt{600}$
£¨4£©£¨$\sqrt{3}$+1£©£¨$\sqrt{3}$-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®º£Ì²ÉÏÓÐÒ»¶ÑÌÒ×Ó£¬µÚÒ»Ììºï×Ó³ÔµôÕâ¶ÑÌÒ×ÓµÄ$\frac{2}{5}$£¬ÓÖ½«4¸öÈÓµ½´óº£ÖУ¬µÚ¶þÌìºï×Ó³ÔµôµÄÌÒ×ÓÊý¼ÓÉÏ3¸ö¾ÍÊǵÚÒ»ÌìËùÊ£ÌÒ×ÓÊýµÄ$\frac{5}{8}$£¬ÈôµÚ¶þÌìÊ£ÏÂ6¸öÌÒ×Ó£¬Îʺ£Ì²ÉÏÔ­ÓжàÉÙ¸öÌÒ×Ó£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÈôµãA£¨2£¬m£©ÔÚÅ×ÎïÏßy=x2ÉÏ£¬ÔòµãA¹ØÓÚÔ­µã¶Ô³ÆµãµÄ×ø±êÊÇ£¨-2£¬-4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®º¯Êýy=ax2-£¨3a+1£©x+2a+1£¨aΪ³£Êý£©µÄͼÏóÓë×ø±êÖáÖ»ÓÐÁ½¸ö½»µã£¬Ôòa=0»ò-$\frac{1}{2}$»ò-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸