【题目】某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).
(1)如图1,问饲养室长x为多少时,占地面积y最大?
(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,AB =24 cm,射线AG∥BC,点E从点A出发沿射线AG以3cm/s的速度运动,同时点F从点B出发沿射线BC以5cm/s的速度运动,设点E运动的时间为t(s).
(1)当点F在线段BC上运动时,CF= cm,当点F在线段BC的延长线上运动时,CF= cm(请用含t的式子表示);
(2)在整个运动过程中,当以点A,C,E,F为顶点的四边形是平行四边形时,求t的值;
(3)当t = s时,E,F两点间的距离最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的高,AE、BF分别是∠BAC,∠ABC的平分线,∠DAC=20,
⑴若∠ABC=60°,求∠EAD的度数;
⑵AE、BF相交于点G,求∠AGB的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣ x2+ x+ ,则该运动员此次掷铅球的成绩是( )
A.6m
B.12m
C.8m
D.10m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为( )
A.120°B.135°C.150°D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5.
(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?
(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位认真开展学习和实践科学发展观活动,在阶段总结中提出对本单位今后的整改措施,并在征求职工对整改方案的满意程度时进行民主测评,测评等级为:很满意、较满意、满意、不满意四个等级.
(1)若测评后结果如扇形图(图①),且测试等级为很满意、较满意、满意、不满意的人数之比为2:5:4:1,则图中a= ° ,β= °.
(2)若测试后部分统计结果如直方图(图②),请将直方图补画完整,并求出该单位职工总人数为 人.
(3)按上级要求,满意度必须不少于95%方案才能通过,否则,必须对方案进行完善.若要使该方案完善后能获得通过,至少还需增加 人对该方案的测评等级达满意(含满意)以上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图6,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2.5小时后到达C点,总共航行了208千米,已知水流的速度是2千米/时。
(1)求游艇在静水中的速度。
(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需多少时间?(结果保留一位小数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】①
②
③x(x+1)-(x-1)(x+1).
④用简便方法计算:20192-2018×2020
⑤先化简,再求值:当x=﹣2,y=3时,求代数式(y+3x)(3x-y)-(3y-x)(3y+x)的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com