精英家教网 > 初中数学 > 题目详情

【题目】宁波与台州两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从宁波开往台州.如图所示,OA是第一列动车组列车离开宁波的路程s(单位:km)与运行时间t(单位:h)的函数图象,BC是一列从台州开往宁波的普通快车距宁波的路程s(单位:km)与运行时间t(单位:h)的函数图象.请根据图中信息,解答下列问题:

(1)B横坐标0.5的意义是普通快车的发车时间比第一列动车组列车的发车时间晚   h,点B的纵坐标300的意义是   

(2)若普通列车的速度为100km/h

BC的解析式;

求第二列动车组列车出发后多长时间与普通列车相遇.

【答案】(1)0.5,两城相距300km;(1)①s=﹣100t+350;②第二列动车组列车出发后1小时与普通列车相遇.

【解析】

1)由图可知,普通快车的发车时间比第一列动车组列车的发车时间晚0.5小时,两城相距300km
2)①由题意可知,B0.5300),C3.50),用待定系数法即可求得;②由图可得MN的解析式,联立150t-150=-100t+350,可求出t值,即可解答;

1)晚0.5,两城相距300km

2)①设直线BC的解析式为skt+b

B0.5300),C3.50),

解得

s=﹣100t+350

②设第二列动车组列车MN的解析式为sk1t+b1

M10),N3300),

解得

s150t150

由①可知直线BC的解析式为s=﹣100t+350

150t150=﹣100t+350

解得t2

211

答:第二列动车组列车出发后1小时与普通列车相遇.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.请回答下列问题:(1)试探究线段BD与线段MF的关系,并简要说明理由;

(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;

(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2AD交于点P,A2M2BD交于点N,当NP∥AB时,求平移的距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,过点C作直线CFAD

(问题)如图,过点D作直线DGAB交直线CF于点E,连结AE,求证:ABDE

(探究)如图,在线段AD上任取一点P,过点P作直线PGAB交直线CF于点E,连结AEBP,探究四边形ABPE是哪类特殊四边形并加以证明.

(应用)在探究的条件下,设PEAC于点M.若点PAD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M是正方形ABCDCD上一点,连接AM,作DEAM于点EBFAM于点F,连接BE,若AF1,四边形ABED的面积为6,则∠EBF的余弦值是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与双曲线交于点A,过点AO的平行线交双曲线于点B,连接AB并延长与y轴交于点,则k的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+bx+3经过点A(30)B(10)两点,抛物线的顶点为M,直线y=﹣4x+9y轴交于点C,与直线OM交于点D

(1)求抛物线的解析式;

(2)Q(03)作不平行于x轴的直线l

如图2,将抛物线平移,当顶点至原点时,直线l交抛物线于点EF,在y轴上存在一点P,使△PEF的内心在y轴上,求点P的坐标;

直线l交△CMD的边CMCD于点GH(G点不与M点重合、H点不与D点重合)S四边形MDHGSCGH分别表示四边形MDHG和△CGH的面积,试探究的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=4BC=6EBC边的中点,点P在线段AD上,过PPFAEF,设PA=x

1)求证:PFA∽△ABE

2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点PFE为顶点的三角形也与ABE相似?若存在,请求出x的值;若不存在,请说明理由;

3)探究:当以D为圆心,DP为半径的⊙D线段AE只有一个公共点时,请直接写出x满足的条件:   

备用图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,点EF在边BC上,点D在边AC上,连接EDDFm,∠A=∠EDF120°

1)如图1,点EB重合,m1

BD平分∠ABC,求证:CD2CFCB

,则   

2)如图2,点EB不重合.若BECFm,求m的值.

查看答案和解析>>

同步练习册答案