精英家教网 > 初中数学 > 题目详情

已知线段,点C是线段上的黄金分割点(AC>BC),则长是        (精确到0.01) .

6.2

解析试题分析:根据点C是线段上的黄金分割点(AC>BC)结合黄金比0.618求解即可.
由题意得
考点:黄金分割点
点评:本题属于基础应用题,只需学生熟练掌握黄金比,即可完成.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)点M是直线CD上的一动点,BM交抛物线于N,是否存在点N是线段BM的中点,如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角梯形ABCD中AD∥BC,∠A=90°,CD=CB=2AD.点Q是AB边中点,点P在CD边上运动,以点P为直角顶点作直角∠MPN,∠MPN的两边分别与AB边、CB边交于点M、N.
(1)若点P与点D重合,点M在线段AQ上,如图(1).求证:
3
MQ-CN=
1
4
BC

(2)若点P是CD中点,点M在线段BQ上,如图(2).线段MQ、CN、BC的数量关系是:
3
3
MQ+CN=
1
4
BC
3
3
MQ+CN=
1
4
BC
,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金山区一模)我们知道,互相垂直且有公共原点的两条数轴构成平面直角坐标系.如果坐标系中两条坐标轴不垂直,那么这样的坐标系称为“斜坐标系”.

如图1,P是斜坐标系xOy中的任意一点,与直角坐标系相类似,过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,若M、N在x轴、y轴上分别对应实数a、b,则有序数对(a,b)叫做点P在斜坐标系xOy中的坐标.
(1)如图2,已知斜坐标系xOy中,∠xOy=60°,试在该坐标系中作出点A(-2,2),并求点O、A之间的距离;
(2)如图3,在斜坐标系xOy中,已知点B(4,0)、点C(0,3),P(x,y)是线段BC上的任意一点,试求x、y之间一定满足的一个等量关系式;
(3)若问题(2)中的点P在线段BC的延长线上,其它条件都不变,试判断上述x、y之间的等量关系是否仍然成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2015届海南省定安县第一学期期中检测七年级数学试卷(解析版) 题型:填空题

已知线段,点C是线段上的黄金分割点(AC>BC),则长是        (精确到0.01) .

 

查看答案和解析>>

同步练习册答案