分析 (1)连接AD,首先利用等腰直角三角形的性质得到AD⊥BC,AD=CD=BD,∠C=∠DAE,得出∠CDF=∠ADE,然后利用ASA证得DCF≌△ADE,得出CF=AE,DF=DE,得出BE=AF,再根据勾股定理即可得出结论;
(2)由(1)知:AE=CF,AF=BC,DE=DF,即△EDF为等腰直角三角形,在Rt△AEF中,运用勾股定理求出EF,进而求出DE、DF的值,代入S△EDF=$\frac{1}{2}$DE2进行求解即可.
解答 (1)证明:连接AD,如图所示:
∵AB=AC,D为BC的中点,∠BAC=90°,
∴AD⊥BC,AD=CD=BD,∠C=∠B=45°,∠DAE=45°,
∵DE⊥DF,
∴∠CDF+∠ADF=∠EDA+∠ADF,
即∠CDF=∠ADE,
在△DCF和△ADE中,$\left\{\begin{array}{l}{∠C=∠DAE}&{\;}\\{CD=AD}&{\;}\\{∠CDF=∠ADE}&{\;}\end{array}\right.$,
∴△DCF≌△ADE(ASA),
∴CF=AE,DF=DE,
∴BE=AF,
∵AF2+AE2=EF2,
∴BE2+CF2=EF2;
(2)解:由(1)知:AE=CF=5,同理AF=BE=12,
∵∠EAF=90°,
∴EF2=AE2+AF2=52+122=169,
∴EF=13,
又∵由(1)知:△AED≌△CFD,
∴DE=DF,
∴△DEF为等腰直角三角形,
∴DE=DF=EF•$\frac{\sqrt{2}}{2}$=$\frac{13\sqrt{2}}{2}$,
∴△DEF的面积=$\frac{1}{2}$DE2=$\frac{169}{4}$.
点评 本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理以及三角形面积的计算;熟练掌握等腰直角三角形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com