精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+2x﹣3x轴交于A、B两点,且B(1,0)

(1)求抛物线的解析式和点A的坐标;

(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;

3)如图2,已知直线y=x分别与x轴、y轴交于CF两点,点Q是直线CF下方的抛物线上的一个动点,过点Qy轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

【答案】1A点坐标为(﹣30);(2);P点坐标为( );(3QD为腰的等腰三角形的面积最大值为

【解析】试题分析:(1)把B点的坐标代入抛物线的解析式,求出a的值即可,令y=0,解方程求得x的值,即可得点A的坐标;(2)当点Px轴上方时,连接APy轴于点B′,可证△OBP≌△OB′P,可求得B′坐标,利用待定系数法可求得直线AP的解析式,联立直线y=x,可求得P点坐标;当点Px轴下方时,同理可求得∠BPO=∠B′PO,又∠B′PO在∠APO的内部,可知此时没有满足条件的点P;(3)过QQH⊥DE于点H,由直线CF的解析式可求得点C、F的坐标,结合条件可求得tan∠QDH,可分别用DQ表示出QHDH的长,分DQ=DEDQ=QE两种情况,分别用DQ的长表示出△QDE的面积,再设出点Q的坐标,利用二次函数的性质可求得△QDE的面积的最大值.

试题解析:

1)把B(1,0)代入y=ax2+2x﹣3,

可得a+2﹣3=0,解得a=1,

∴抛物线解析式为y=x2+2x﹣3,

y=0,可得x2+2x﹣3=0,解得x=1x=﹣3,

A点坐标为(﹣3,0);

(2)若y=x平分∠APB,则∠APO=BPO,

如图1,若P点在x轴上方,PAy轴交于点B′,

由于点P在直线y=x上,可知∠POB=POB′=45°,

在△BPO和△B′PO

∠POB=∠PCB/,OP=OP,∠BPO=∠B/PO,

∴△BPO≌△B′PO(ASA),

BO=B′O=1,

设直线AP解析式为y=kx+b,把A、B′两点坐标代入可得

,解得

∴直线AP解析式为y=x+1

联立,解得

P点坐标为( );

P点在x轴下方时,同理可得△BOP≌△B′OP,

∴∠BPO=B′PO,

又∠B′PO在∠APO的内部,

∴∠APO≠∠BPO,即此时没有满足条件的P点,

综上可知P点坐标为( );

(3)如图2,作QHCF,交CF于点H,

CFy=x

∴可求得C0),F0),

tanOFC==

DQy轴,

∴∠QDH=MFD=OFC,

tanHDQ=

不妨设DQ=tDH=tHQ=t

∵△QDE是以DQ为腰的等腰三角形,

∴若DQ=DE,则SDEQ=DEHQ=×t×t=t2

DQ=QE,则SDEQ=DEHQ=×2DHHQ=×t×t=t2

t2t2

∴当DQ=QE时△DEQ的面积比DQ=DE时大.

Q点坐标为(xx2+2x3),则Dx x),

Q点在直线CF的下方,

DQ=t=xx2+2x3=x2x+

x=时,tmax=3

SDEQmax=t2=

即以QD为腰的等腰三角形的面积最大值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)如图①,ABC是等边三角形,点D是边BC上任意一点(不与BC重合),点E在边AC上,∠ADE=60°,∠BAD与∠CDE有怎样的数量关系,并给予证明.

2)如图②,在ABC中,AB=AC,点D是边BC上一点(不与BC重合), ADE=B,点E在边AC.CE=BD=3BC=8,求AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D在△ABC的边BC上,DC=2BD,连接AD与△ABC的中线BE交于点F,连接CF,若△ABC的面积为24,则△AEF的面积为( )

A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举行了文明在我身边摄影比赛.已知每幅参赛作品成绩记为 ().校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.

根据以上信息解答下列问题:

1)统计表中的值为;

2)补全频数分布直方图;

3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评的作品数量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 在正方形ABCD中.

1)如图1,点EF分别在BCCD上,AEBF相交于点O,∠AOB=90°,试判断AEBF的数量关系,并说明理由;

2)如图2,点EFGH分别在边BCCDDAAB上,EGFH相交于点O,∠GOH=90°,且EG=7,求FH的长;

3)如图3,点EF分别在BCCD上,AEBF相交于点O,∠AOB=90°,若AB=5,图中阴影部分的面积与正方形的面积之比为45,求△ABO的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE∥BF,AC、BD分别是∠BAD、∠ABC的平分线,且AC交BF于点C,BD交AE于点D,连接CD.求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,AB=4,点D是AB的中点,动点P、Q同时从点D出发(点P、Q不与点D重合),点P沿D→A以1cm/s的速度向中点A运动.点Q沿D→B→D以2cm/s的速度运动.回到点D停止.以PQ为边在AB上方作正方形PQMN,设正方形PQMN与△ABC重叠部分的面积为S(cm2),点P运动的时间为t(s).

(1)当点N在边AC上时,求t的值.

(2)用含t的代数式表示PQ的长.

(3)当点Q沿D→B运动,正方形PQMN与△ABC重叠部分图形是五边形时,求S与t之间的函数关系式.

(4)直接写出正方形PQMN与△ABC重叠部分图形是轴对称图形时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中,ABC为格点三角形(顶点都是格点),将ABC绕点A按逆时针方向旋转90°得到AB1C1

(1)在正方形网格中,作出AB1C1;(不要求写作法)

(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】袋中装有大小相同的2个红球和2个绿球.

1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.

求第一次摸到绿球,第二次摸到红球的概率;

求两次摸到的球中有1个绿球和1个红球的概率;

2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.

查看答案和解析>>

同步练习册答案