【题目】如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)
(1)求抛物线的解析式和点A的坐标;
(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;
(3)如图2,已知直线y=x﹣分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.
【答案】(1)A点坐标为(﹣3,0);(2);P点坐标为(, );(3)以QD为腰的等腰三角形的面积最大值为.
【解析】试题分析:(1)把B点的坐标代入抛物线的解析式,求出a的值即可,令y=0,解方程求得x的值,即可得点A的坐标;(2)当点P在x轴上方时,连接AP交y轴于点B′,可证△OBP≌△OB′P,可求得B′坐标,利用待定系数法可求得直线AP的解析式,联立直线y=x,可求得P点坐标;当点P在x轴下方时,同理可求得∠BPO=∠B′PO,又∠B′PO在∠APO的内部,可知此时没有满足条件的点P;(3)过Q作QH⊥DE于点H,由直线CF的解析式可求得点C、F的坐标,结合条件可求得tan∠QDH,可分别用DQ表示出QH和DH的长,分DQ=DE和DQ=QE两种情况,分别用DQ的长表示出△QDE的面积,再设出点Q的坐标,利用二次函数的性质可求得△QDE的面积的最大值.
试题解析:
(1)把B(1,0)代入y=ax2+2x﹣3,
可得a+2﹣3=0,解得a=1,
∴抛物线解析式为y=x2+2x﹣3,
令y=0,可得x2+2x﹣3=0,解得x=1或x=﹣3,
∴A点坐标为(﹣3,0);
(2)若y=x平分∠APB,则∠APO=∠BPO,
如图1,若P点在x轴上方,PA与y轴交于点B′,
由于点P在直线y=x上,可知∠POB=∠POB′=45°,
在△BPO和△B′PO中,
∠POB=∠PCB/,OP=OP,∠BPO=∠B/PO,
∴△BPO≌△B′PO(ASA),
∴BO=B′O=1,
设直线AP解析式为y=kx+b,把A、B′两点坐标代入可得
,解得,
∴直线AP解析式为y=x+1,
联立,解得,
∴P点坐标为(, );
若P点在x轴下方时,同理可得△BOP≌△B′OP,
∴∠BPO=∠B′PO,
又∠B′PO在∠APO的内部,
∴∠APO≠∠BPO,即此时没有满足条件的P点,
综上可知P点坐标为(, );
(3)如图2,作QH⊥CF,交CF于点H,
∵CF为y=x﹣,
∴可求得C(,0),F(0,﹣),
∴tan∠OFC==,
∵DQ∥y轴,
∴∠QDH=∠MFD=∠OFC,
∴tan∠HDQ=,
不妨设DQ=t,DH=t,HQ=t,
∵△QDE是以DQ为腰的等腰三角形,
∴若DQ=DE,则S△DEQ=DEHQ=×t×t=t2,
若DQ=QE,则S△DEQ=DEHQ=×2DHHQ=×t×t=t2,
∵t2<t2,
∴当DQ=QE时△DEQ的面积比DQ=DE时大.
设Q点坐标为(x,x2+2x﹣3),则D(x,
∵Q点在直线CF的下方,
∴DQ=t=x﹣﹣(x2+2x﹣3)=﹣x2﹣x+,
当x=﹣时,tmax=3,
∴(S△DEQ)max=t2=,
即以QD为腰的等腰三角形的面积最大值为.
科目:初中数学 来源: 题型:
【题目】(1)如图①,△ABC是等边三角形,点D是边BC上任意一点(不与B、C重合),点E在边AC上,∠ADE=60°,∠BAD与∠CDE有怎样的数量关系,并给予证明.
(2)如图②,在△ABC中,AB=AC,点D是边BC上一点(不与B、C重合), ∠ADE=∠B,点E在边AC上.若CE=BD=3,BC=8,求AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D在△ABC的边BC上,DC=2BD,连接AD与△ABC的中线BE交于点F,连接CF,若△ABC的面积为24,则△AEF的面积为( )
A.4B.5C.6D.7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为分 ().校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.
根据以上信息解答下列问题:
(1)统计表中的值为;
(2)补全频数分布直方图;
(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评的作品数量是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 在正方形ABCD中.
(1)如图1,点E、F分别在BC、CD上,AE、BF相交于点O,∠AOB=90°,试判断AE与BF的数量关系,并说明理由;
(2)如图2,点E、F、G、H分别在边BC、CD、DA、AB上,EG、FH相交于点O,∠GOH=90°,且EG=7,求FH的长;
(3)如图3,点E、F分别在BC、CD上,AE、BF相交于点O,∠AOB=90°,若AB=5,图中阴影部分的面积与正方形的面积之比为4:5,求△ABO的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,AB=4,点D是AB的中点,动点P、Q同时从点D出发(点P、Q不与点D重合),点P沿D→A以1cm/s的速度向中点A运动.点Q沿D→B→D以2cm/s的速度运动.回到点D停止.以PQ为边在AB上方作正方形PQMN,设正方形PQMN与△ABC重叠部分的面积为S(cm2),点P运动的时间为t(s).
(1)当点N在边AC上时,求t的值.
(2)用含t的代数式表示PQ的长.
(3)当点Q沿D→B运动,正方形PQMN与△ABC重叠部分图形是五边形时,求S与t之间的函数关系式.
(4)直接写出正方形PQMN与△ABC重叠部分图形是轴对称图形时t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.
(1)在正方形网格中,作出△AB1C1;(不要求写作法)
(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】袋中装有大小相同的2个红球和2个绿球.
(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.
①求第一次摸到绿球,第二次摸到红球的概率;
②求两次摸到的球中有1个绿球和1个红球的概率;
(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com