【题目】如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为1.
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;
(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.
【答案】(1)反比例函数解析式为:y=;(2)P(5,0);(3)Q点坐标为:(,0).
【解析】
试题(1)利用已知点B坐标代入一次函数解析式得出答案,再利用△OBM的面积得出M点纵坐标,再利用相似三角形的判定与性质得出M点坐标即可得出反比例函数解析式;
(2)过点M作PM⊥AM,垂足为M,得出△AOB∽△PMB,进而得出BP的长即可得出答案;
(3)利用△QBM∽△OAM,得出=,进而得出OQ的长,即可得出答案.
解:(1)如图1,过点M作MN⊥x轴于点N,
∵一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,
∴0=k1﹣1,AO=BO=1,
解得:k1=1,
故一次函数解析式为:y=x﹣1,
∵△OBM的面积为1,BO=1,
∴M点纵坐标为:2,
∵∠OAB=∠MNB,∠OBA=∠NBM,
∴△AOB∽△MNB,
∴==,
则BN=2,
故M(3,2),
则xy=k2=6,
故反比例函数解析式为:y=;
(2)如图2,过点M作PM⊥AM,垂足为M,
∵∠AOB=∠PMB,∠OBA=∠MBP,
∴△AOB∽△PMB,
∴=,
由(1)得:AB==,BM==2,
故=,
解得:BP=4,
故P(5,0);
(3)如图3,∵△QBM∽△OAM,
∴=,
由(2)可得AM=3,
故=,
解得:QB=,
则OQ=,
故Q点坐标为:(,0).
科目:初中数学 来源: 题型:
【题目】在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.
(1)如图1,当点与点重合时,的形状是_____________________;
(2)当点在点M的左侧时,如图2.
①依题意补全图2;
②判断的形状,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上三点M,O,N对应的数分别是-1,0,3,点P为数轴上任意点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时P点到点M、点N的距离相等,则t的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:
(1)本次调查共抽查了 名学生;
(2)两幅统计图中的m= ,n= .
(3)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。
类比研究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设,,,请探索,,满足的等量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
(1)求AE的长;
(2)当t为何值时,△PAE为直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
甲 | 乙 | ||
购树苗数量 | 销售单价 | 购树苗数量 | 销售单价 |
不超过500棵时 | 800元/棵 | 不超过1000棵时 | 800元/棵 |
超过500棵的部分 | 700元/棵 | 超过1000棵的部分 | 600元/棵 |
设购买银杏树苗x棵,到两家购买所需费用分别为y甲元、y乙元
(1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为 元,若都在乙家购买所需费用为 元;
(2)当x>1000时,分别求出y甲、y乙与x之间的函数关系式;
(3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G.
(1)求证:△ACE≌△CBD;
(2)求∠CGE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,以△ABC的边AB为直径作⊙O,交AC边于点E,BD平分∠ABE交AC于F,交⊙O于点D,且∠BDE=∠CBE.
(1)求证:BC是⊙O的切线;
(2)延长ED交直线AB于点P,如图2,若PA=AO,DE=3,DF=2,求的值及AO的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com