精英家教网 > 初中数学 > 题目详情
如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE,下列结论中:
①CE=BD;            ②△ADC是等腰直角三角形;
③∠ADB=∠AEB;      ④CD•AE=EF•CG.
一定正确的结论是
①②③④
①②③④
分析:①利用SAS证明△BAD≌△CAE,可得到CE=BD,
②利用平行四边形的性质可得AE=CD,再结合△ADE是等腰直角三角形可得到△ADC是等腰直角三角形;
③利用SAS证明△BAE≌△BAD可得到∠ADB=∠AEB;
④利用得出∠GFD=∠AFE,以及∠GDF+GFD=90°,进而得出△CGD∽△EAF,得出比例式.
解答:解:①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即:∠BAD=∠CAE,
∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AE=AD,
∴△BAD≌△CAE(SAS),
∴CE=BD,
∴故①正确;
②∵四边形ACDE是平行四边形,
∴∠EAD=∠ADC=90°,AE=CD,
∵△ADE都是等腰直角三角形,
∴AE=AD,
∴AD=CD,
∴△ADC是等腰直角三角形,
∴②正确;
③∵△ADC是等腰直角三角形,
∴∠CAD=45°,
∴∠BAD=90°+45°=135°,
∵∠EAD=∠BAC=90°,∠CAD=45°,
∴∠BAE=360°-90°-90°-45°=135°,
又∵AB=AB,AD=AE,
∴△BAE≌△BAD(SAS),
∴∠ADB=∠AEB;
故③正确;
④∵△BAD≌△CAE,△BAE≌△BAD,
∴△CAE≌△BAE,
∴∠BEA=∠AEC=∠BDA,
∵∠AEF+∠AFE=90°,
∴∠AFE+∠BEA=90°,
∵∠GFD=∠AFE,
∴∠GDF+∠GFD=90°,
∴∠CGD=90°,
∵∠FAE=90°,∠GCD=∠AEF,
∴△CGD∽△EAF,
∴CDEF=CGAE,
∴CD•AE=EF•CG.
故④正确,
故答案为①②③④.
点评:本题主要考查了全等三角形的判定及性质,以及相似三角形的判定,注意细心分析,熟练应用全等三角形的判定以及相似三角形的判定是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连CF,
(1)如图1,当D点在BC上时,BE与CF的数量关系是
 
,位置关系是
 
,请证明.
精英家教网
(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.
(3)如图3,把△DEC绕C点顺时针旋转45°,若∠DCF=30°,直接写出
BGCG
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,点C在AD上,如果△ABC经旋转后能与△ADE重合,那么点
A
是旋转中心,旋转的最小度数为
45
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,BC=3,CD=1.
(1)求证:tan∠AEC=
BCCD

(2)请探究BM与DM的数量关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交 CE于点G,连接BE.下列结论中:
①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
一定正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求证:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2
2
.求∠ACD的度数;
(3)在(2)的条件下,直接写出DE的长为
2
10
2
10
.(只填结果,不用写出计算过程)

查看答案和解析>>

同步练习册答案