【题目】如图,己知△ABC是等边三角形,点P在△ABC内,点Q在△ABC外,分别连接AP、BP、AQ、CQ,∠ABP=∠ACQ, BP=CQ.
(1)求证:△ABP≌△ACQ;
(2)连接PQ,求证△APQ是等边三角形;
(3)连接P设△CPQ是以PQC为顶角的等腰三角形,且∠BPC=100,求∠APB的度数.
【答案】(1)答案见解析;(2)答案见解析;(3)160°
【解析】试题分析:易证AB=AC,∠BAC=60°,即可证明△ABP≌△ACQ,可得∠BAP=∠CAQ,AP=AQ,即可求得∠PAQ=60°,即可解题.
(1)证明: ∵ △ABC是等边三角形,
∴ AB=AC .
在△ABP和△ACQ中
,
∴ △ABP ≌ △ACQ ( SAS ).
(2)证明: ∵ △ABP ≌ △ACQ,
∴ , ,
∴ ,
∴ .
∵ △ABC是等边三角形,
∴ ,
∴ ,
∴ △APQ是等边三角形.
(3)解: 如图示
∵ △CPQ是等腰三角形,∠PQC为顶角,
∴ .
设,
= .
∵ △APQ是等边三角形,
∴ ,
∴ .
∵ △ABP ≌ △ACQ,
∴ ,
∴ .
∵ ,
又∵
∴ ,
解得 ,
∴ .
点睛: 本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.
科目:初中数学 来源: 题型:
【题目】有许多代数恒等式可以用图形的面积来表示,如图①,它表示(2m+n)(m+n)=2m2+3mn+n2.
(1) 观察图②,请你写出三个代数式(m+n) 2、(m-n) 2、mn之间的等量关系是_________;
(2) 小明用8个一样大的长方形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的长方形:图案甲的中间留下了边长是2cm的正方形小洞.则(a+2b)2-8ab的值_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;
(2)设∠BAC= ,∠DCE= .
① 如图2,当点D在线段CB上,∠BAC≠90°时,请你探究与之间的数量关系,并证明你的结论;
② 如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时与之间的数量关系(不需证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为________;
(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)如图,已知直线和双曲线 (k>0),点A(m,n)在双曲线 上.当m=n=2时.
(1)直接写出k的值;
(2)将直线作怎样的平移能使平移后的直线与双曲线 只有一个交点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△DEF是由△ABC绕点O顺时针旋转180°后形成的图形;
(1)请你指出图中所有相等的线段;
(2)图中哪些三角形可以被看成是关于点O成中心对称关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与轴交于点A,点B(1,0),与轴交于点C(0,﹣3),点M是其顶点.
(1)求抛物线解析式;
(2)第一象限抛物线上有一点D,满足∠DAB=45°,求点D的坐标;
(3)直线 (﹣3<<﹣1)与x轴相交于点H.与线段AC,AM和抛物线分别相交于点E,F,P.证明线段HE,EF,FP总能组成等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究
()如图①,已知正方形的边长为,点和分别是边、上两点,且.连接和,交于点.猜想与的位置关系,并证明你的结论.
()如图②,已知正方形的边长为,点和分别从点、同时出发,以相同的速度沿、方向向终点和运动,连接和,交于点,求周长的最大值.
问题解决
()如图③,为边长为的菱形的对角线, .点和分别从点、同时出发;以相同的速度沿、向终点和运动,连接和,交于点,求周长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com