【题目】在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )
A.
B.
C.
D.
【答案】D
【解析】解:解法一:逐项分析
A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;
B、由函数y=mx+m的图象可知m<0,对称轴为x= = = <0,则对称轴应在y轴左侧,与图象不符,故B选项错误;
C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;
D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x= = = <0,则对称轴应在y轴左侧,与图象相符,故D选项正确;
解法二:系统分析
当二次函数开口向下时,﹣m<0,m>0,
一次函数图象过一、二、三象限.
当二次函数开口向上时,﹣m>0,m<0,
对称轴x= <0,
这时二次函数图象的对称轴在y轴左侧,
一次函数图象过二、三、四象限.
故选:D.
本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x= ,与y轴的交点坐标为(0,c).
科目:初中数学 来源: 题型:
【题目】阅读理解:如图1,在的边上取一点,连接,可以把分成两个三角形,如果这两个三角形都是等腰三角形,我们就称点是的边上的和谐点.
(1)如图2,在中,,试找出边上的和谐点;
(2)如图3,已知,的顶点在射线上,点是边上的和谐点,请在图3中画出所有符合条件的点,并写出相应的的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAD=∠DAC,DF上AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.当t=________秒时,△DFE与△DMG全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,AB=AC,∠BAC=90°.
(1)如图,若CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究线段BE和CD的数量关系,并证明你的结论
(2)如图,若点D在线段BC延长上,BE⊥DE,垂足为E,DE与AB相交于点F.试探究线段BE和FD的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为( )
A. 1 B. 1.5 C. 2.5 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,F为BE的中点,连结DF,CF.
(1)如图①,当点D在AB上,点E在AC上,请直接写出此时线段DF,CF的数量关系和位置关系.
(2)如图②,在(1)的条件下将△ADE绕点A顺时针旋转45°,请你判断此时(1)中的结论是否仍然成立,并证明你的判断.
(3)如图③,在(1)的条件下将△ADE绕点A顺时针旋转90°,若AD=1,AC=,求此时线段CF的长(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上。 正确的是 (填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y=﹣2x与反比例函数y= 的图象相交于A(m,2),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)结合图象直接写出当﹣2x> 时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com