分析 (1)由已知两对角相等,且夹边为公共边相等,利用ASA得到△ABC≌△DBC,利用全等三角形对应边相等得到AB=DB,再利用SAS得到△ABP≌△DBP,利用全等三角形对应边相等即可得证;
(2)同(1)中证明相同,进而证明即可;
(3)当P点是AD与BC的交点时,可以得出AD⊥BC结论.
解答 解:(1)在△ABC和△DBC中,
$\left\{\begin{array}{l}{∠1=∠2}\\{BC=BC}\\{∠3=∠4}\end{array}\right.$,
∴△ABC≌△DBC(ASA),
∴AB=DB,
在△ABP和△DBP中,
$\left\{\begin{array}{l}{AB=DB}\\{∠1=∠2}\\{BP=BP}\end{array}\right.$,
∴△ABP≌△DBP(SAS),
∴AP=DP;
(2)成立,理由如下:
在△ABC和△DBC中,
$\left\{\begin{array}{l}{∠1=∠2}\\{BC=BC}\\{∠3=∠4}\end{array}\right.$,
∴△ABC≌△DBC(ASA),
∴AB=DB,
在△ABP和△DBP中,
$\left\{\begin{array}{l}{AB=DB}\\{∠1=∠2}\\{BP=BP}\end{array}\right.$,
∴△ABP≌△DBP(SAS),
∴AP=DP;
(3)当P点是AD与BC的交点时,得出AD⊥BC,理由如下:
在△ABC和△DBC中,
$\left\{\begin{array}{l}{∠1=∠2}\\{BC=BC}\\{∠3=∠4}\end{array}\right.$,
∴△ABC≌△DBC(ASA),
∴AB=DB,
在△ABP和△DBP中,
$\left\{\begin{array}{l}{AB=DB}\\{∠1=∠2}\\{BP=BP}\end{array}\right.$,
∴△ABP≌△DBP(SAS),
∴∠APB=∠BPD=90°,
∴AD⊥BC.
点评 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com