精英家教网 > 初中数学 > 题目详情

【题目】如图,C为线段AB的中点,点D在线段CB上.

(1)图中共有 条线段.

(2)图中AD=AC+CD,BC=AB﹣AC,类似地,请你再写出两个有关线段的和与差的关系式:

.

(3)若AB=8,DB=1.5,求线段CD的长.

【答案】(1)6;(2)(2)①BC=CD+DB,②AD=ABDB;(答案不唯一)(3)CD=2.5.

【解析】试题分析:(1)根据图形写出所有线段即可;

(2)结合图形解得即可;

(3)根据中点的性质求出CB的长,结合图形计算即可.

试题解析:(1)图中有AC、AD、AB、CD、CB、DB6条线段;

故答案为:6;

(2)BC=CD+DB,

AD=ABDB,

故答案为:①BC=CD+DB,AD=ABDB;

(3)C为线段AB的中点,AB=8,

CB=AB=4,

CD=CBDB=2.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线相交于点平分平分

的度数;

的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠A=110°,E、F分别是边ABBC的中点,EPCD于点P,则∠FPC等于( )

A. 45° B. 35° C. 55° D. 50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, ABC中,AC=3、AB=4、BC=5, PBC上一动点,PGAC于点GPHAB

于点HMGH的中点,P在运动过程中PM的最小值为(

A. 2.4 B. 1.4

C. 1.3 D. 1.2

【答案】D

【解析】分析: AC=3、AB=4、BC=5,AC2+AB2=BC2,则A=90°,再结合PGACPHAB可证四边形AGPH是矩形;连接AP,可知当APBCAP最短,结合矩形的两对角线相等和面积法,求出GH的值,

详解:∵AC=3、AB=4、BC=5,

AC2=9,AB2=16,BC2=25,

AC2+AB2=BC2

∴∠A=90°.

PGACPHAB

∴∠AGP=AHP=90°

四边形AGPH是矩形.

连接AP

GH=AP.

∵当APBC时,AP最短,

3×4=5AP

AP=

PM的最小值为1.2.

故选D.

点睛: 本题考查了勾股定理的逆定理,矩形的判定与性质,垂线段最短,面积法求线段的长,需结合矩形的判定方法,矩形的性质以及三角形面积的知识求解;确定出点P的位置是解答本题的关键.

型】单选题
束】
18

【题目】计算:

(1) (2)

(3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)求值:2 sin45°+(﹣3)2﹣20170×|﹣4|+
(2)先化简,再求值:( ﹣x﹣1)÷ ,其中x是不等式组 的一个整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知AOB=140°,∠AOC=30°,OEAOB内部的一条射线,且OF平分AOE

(1)若EOB=30°,则COF=

(2)若COF=20°,则EOB=

(3)若COF=n°,则EOB= (用含n的式子表示).

(4)当射线OE绕点O逆时针旋转到如图2的位置时,请把图补充完整;此时,COFEOB有怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1、2、3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,……

根据图中花盆摆放的规律,图4中,应该有__________盆花;第n个图形中应该有_________盆花。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,点MN把线段AB分割成AMMNBN,若以AMMNBN为边的三角形是一个直角三角形,则称点MN是线段AB的勾股分割点.

请解决下列问题:

(1)已知点MN是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;

(2)如图2,若点FMNG分别是ABADAEAC边上的中点,点DE是线段BC的勾股分割点,且EC>DE>BD,求证:点MN是线段FG的勾股分割点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作探究:已知在纸面上有一数轴(如图所示).

操作一

(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;

操作二:

(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:

5表示的点与数________表示的点重合;

②若数轴上AB两点之间距离为11(AB的左侧),且AB两点经折叠后重合,求AB两点表示的数是多少.

查看答案和解析>>

同步练习册答案