精英家教网 > 初中数学 > 题目详情

【题目】20173月起,成都市中心城区居民用水实行以户为单位的三级阶梯收费办法:

I级:居民每户每月用水18吨以内含18吨每吨收水费a元;

第Ⅱ级:居民每户每月用水超过18吨但不超过25吨,未超过18吨的部分按照第Ⅰ级标准收费,超过部分每吨收水费b元;

第Ⅲ级:居民每户每月用水超过25吨,未超过25吨的部分按照第I、Ⅱ级标准收费,超过部分每吨收水费c元.

设一户居民月用水x吨,应缴水费为y元,yx之间的函数关系如图所示

1)根据图象直接作答:a   b   

2)求当x≥25yx之间的函数关系;

3)把上述水费阶梯收费办法称为方案①,假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费,请你根据居民每户月用水量的大小设计出对居民缴费最实惠的方案.(写出过程)

【答案】134;(2)当x≥25时,yx之间的函数关系式为y6x68;(3)当x34时,选择缴费方案①更实惠;当x34时,选择两种缴费方案费用相同;当x34时,选择缴费方案②更实惠

【解析】

1)根据单价=总价÷数量可求出ab的值,此问得解;

2)观察函数图象,找出点的坐标,利用待定系数法即可求出当x≥25yx之间的函数关系;

3)由总价=单价×数量可找出选择缴费方案②需交水费y(元)与用水数量x(吨)之间的函数关系式,分别找出当6x684x6x684x6x684xx的取值范围(x的值),选择费用低的方案即可得出结论.

1a54÷183

b=(8254÷2518)=4

故答案为:34

2)设当x≥25时,yx之间的函数关系式为ymx+nm≠0),

将(2582),(35142)代入ymx+n,得:

解得:

∴当x≥25时,yx之间的函数关系式为y6x68

3)根据题意得:选择缴费方案②需交水费y(元)与用水数量x(吨)之间的函数关系式为y4x

6x684x时,x34

6x684x时,x34

6x684x时,x34

∴当x34时,选择缴费方案①更实惠;当x34时,选择两种缴费方案费用相同;当x34时,选择缴费方案②更实惠.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:如果一元二次方程满足a+b+c=0,我们称这个方程为凤凰方程.已知是凤凰方程,且有两个相等的实数根,则下列正确的是(  )

A.a=cB.a=bC.b=cD.a=b=c

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数yax22ax3aa0)的图象与x轴交于AB两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D

1)求顶点D的坐标(用含a的代数式表示);

2)若以AD为直径的圆经过点C

①求抛物线的函数关系式;

②如图2,点Ey轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点PMN分别和点OBE对应),并且点MN都在抛物线上,作MFx轴于点F,若线段MFBF12,求点MN的坐标;

③点Q在抛物线的对称轴上,以Q为圆心的圆过AB两点,并且和直线CD相切,如图3,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为好玩三角形.若RtABC是好玩三角形,且∠C90°BC≥AC,则sinB_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,EF为对角线BD上的两点,且∠DAE=∠BCF

求证:(1AECF

2)四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1O过正方形ABCD的顶点AD且与边BC相切于点E,分别交ABDC于点MN.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心OP点的距离为y,图2记录了一段时间里yx的函数关系,在这段时间里P点的运动路径为( )

A. D点出发,沿弧DA→AM→线段BM→线段BC

B. B点出发,沿线段BC→线段CN→ND→DA

C. A点出发,沿弧AM→线段BM→线段BC→线段CN

D. C点出发,沿线段CN→ND→DA→线段AB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,,点是边上一点,过点分别作的垂线,过点的垂线,得到矩形和矩形,则这两个矩形的面积之和的最大值是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校教学楼与实验楼的水平间距米,在实验楼顶部点测得教学楼顶部点的仰角是,底部点的俯角是,则教学楼的高度是____米(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线Ly=x+2x轴、y轴分别交于AB两点,在y轴上有一点N04),动点MA点以每秒1个单位的速度匀速沿x轴向左移动.

1)点A的坐标:_____;点B的坐标:_____

2)求NOM的面积SM的移动时间t之间的函数关系式;

3)在y轴右边,当t为何值时,NOMAOB,求出此时点M的坐标;

4)在(3)的条件下,若点G是线段ON上一点,连结MGMGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.

查看答案和解析>>

同步练习册答案