精英家教网 > 初中数学 > 题目详情
14.若a:b=1:2,b:c=4:6,则a:b:c=(  )
A.1:2:3B.1:2:4C.1:2:6D.1:4:6

分析 分别用b表示出a和c,然后再求比值即可.

解答 解:∵a:b=1:2,b:c=4:6,
∴a=$\frac{1}{2}$b,c=$\frac{3}{2}$b,
∴a:b:c=1:2:3,
故选A.

点评 本题主要考查了比例的性质,解题的关键是用b表示出a和c,此题基础题,比较简单.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重为3:4:4,则李明的最终成绩是(  )
A.96.7分B.97.1分C.88.3分D.265分

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.化简:(x+1)(x-1)(x2-x+1)(x2+x+1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,抛物线y=ax2+b的顶点坐标为(0,-1),且经过点A(-2,0).

(1)求抛物线的解析式;
(2)若将抛物线y=ax2+b中在x轴下方的图象沿x轴翻折到x轴上方,x轴上方的图象保持不变,就得到了函数y=|ax2+b|图象上的任意一点P,直线l是经过(0,1)且平行与x轴的直线,过点P作直线l的垂线,垂足为D,猜想并探究:PO与PD的差是否为定值?如果是,请求出此定值;如果不是,请说明理由.
(注:在解题过程中,如果你觉得有困难,可以阅读下面的材料)
附阅读材料:
1.在平面直角坐标系中,若A、B两点的坐标分别为A(x1,y1),B(x2,y2),则A,B两点间的距离为|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$,这个公式叫两点间距离公式.
例如:已知A,B两点的坐标分别为(-1,2),(2,-2),则A,B两点间的距离为|AB|=$\sqrt{(-1-2)^{2}+(2+2)^{2}}$=5.
2.因式分解:x4+2x2y2+y4=(x2+y22

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在矩形ABCD中,AB=2,AD=3,点P在边AD上,连接BP,点A关于直线BP的对称点为A1

(1)点A1落在BC边上,求AP的长;
(2)点A1落在线段PC上,求AP的长;
(3)点A1到直线CD的距离等于A1B的长,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图1,已知A(a,1),B(2,b),且a,b满足(2a-3b-2)2+$\sqrt{a-2b}$=0.
(1)求A,B的坐标;
(2)在y轴上是否存在点P,使S△PAB=1?若存在,直接写出满足条件的所有点P的坐标;若不存在,请说明理由.
(3)如图2,MB∥NO,点N在x轴上,OD平分∠AON,延长AB交OD于C,BC平分∠DBM,且∠D+$\frac{1}{2}$∠A=60°,求∠DBM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,矩形ABCD(AD>AB),AB=1,问BC边上是否存在点M,使得AM⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.甲、乙两人分别乘不同的冲锋舟同时从A地匀速行驶前往B地,甲到达B地立即沿原路匀速返回A地,图中的折线OMC表示甲乘冲锋舟离开A地的距离y(千米)与所用时间x(分钟)之间的函数关系;图中的线段ON表示乙乘冲锋舟离开A地的距离y(千米)与所用时间t(分钟)之间的函数关系.
根据图象解答问题:
信息读取:
(1)A,B两地之间的距离为20千米,线段OM对应的函数关系式为y=$\frac{5}{6}$x,线段MC对应的函数关系式为y=-$\frac{5}{6}$x+40,线段对应的函数关系式为y=$\frac{1}{2}$x;
图象理解:
(2)求图中线段ON和MC的交点D的坐标,并说明其横、纵坐标的实际意义;
问题解决:
(3)直接写出整个行驶过程中,甲、乙两人所乘坐的冲锋舟之间的距离为5千米时,对应的行驶时间x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.在正数范围内定义一种运算“*”,其规则是a*b=$\frac{1}{a}$-$\frac{1}{b}$,如果x*(2x)=1,则x的值为(  )
A.2B.$\frac{1}{2}$C.-2D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案