精英家教网 > 初中数学 > 题目详情
精英家教网如图,在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点.
求证:MN与PQ互相垂直平分.
分析:先利用平行四边形的判定得出PM=
1
2
AB;NQ=
1
2
AB,证明四边形MPNQ是平行四边形后再证得四边形MPNQ为菱形,然后可证得MN与PQ互相垂直平分.
解答:精英家教网证明:连接MP,PN,NQ,QM,
∵AM=MD,BP=PD,
∴PM=
1
2
AB,
∴PM是△ABD的中位线,
∴PM∥AB;
同理NQ=
1
2
AB,NQ∥AB,MQ=
1
2
DC,
∴PM=NQ,且PM∥NQ.
∴四边形MPNQ是平行四边形.(3分)
又∵AB=DC,∴PM=MQ,
∴平行四边形MPNQ是菱形.(5分)
∴MN与PQ互相垂直平分.(6分)
点评:本题考查的是线段的垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识以及平行四边形的判定定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案