精英家教网 > 初中数学 > 题目详情
如图,M为双曲线y=
4
x
上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为______.
设M点的坐标为(a,
4
a
),
∵直线y=-x+m与y轴交于点A,与x轴相交于点B,
∴A点坐标为(0,m),B点坐标为(m,0),
∵C和M点的纵坐标相同为
4
a

∴点C的横坐标为m-
4
a

∴点C的坐标为(m-
4
a
4
a
),
同理可得D点的坐标为(a,m-a),
∴AD=
a2+(m-a-m)2
=
2a2
=
2
a,BC=
(m-m+
4
a
)2+(
4
a
)2
=
4
2
a

∴AD•BC=
2
4
2
a
=8,
故答案为8.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线与y=2x双曲线y=
8
x
相交于点A、E,直线AB与双曲线交于点B,与x轴、y轴分别交于点C、D,且B点横坐标等于纵坐标的两倍,直线EB交x轴于点F,
(1)求直线AB的解析式;
(2)求证:△COD△CBF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
2
x
的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求△AOB的面积.
(3)在x轴上有一点P,使得△OAP为等腰三角形,请直接写出符合要求的所有P点坐标.(不必写计算过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
k
x
的图象经过点A(2,m),过点A作AB垂直y轴于点B,△AOB的面积为5.
(1)求k和m的值;
(2)已知点C(-5,-2)在反比例函数图象上,直线AC交x轴于点M,求△AOM的面积;
(3)过点C作CD⊥x轴于点D,连接BD,试证明四边形ABDC是梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y=
2
x
图象上,则图中过点A的双曲线解析式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知矩形ABCD面积是8,长为y,宽为x.则y关于x的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明家利用国家贷款100万元,购买了五脑山庄的一套住房,在交了首期付款后,每年需向银行付款y万元,预计x年后结清余款,y与x的函数关系如下图所示,试根据图象所提供的信息,回答下列问题:
(1)确定y与x之间的函数表达式,并说明小明家交了多少万元首付款;
(2)小明家若计划用15年时间结清余款,那么每年应向银行交付多万元?
(3)若打算每年付款不超过6万元,小明家至少要多少年才能结清余款?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCO(OA>OC)的两边分别在x轴的负半轴和y轴的正半轴上,点B在反比例函数y=-
8
x
(x<0)的图象上,且OC=2.将矩形ABCO以C为旋转中心,逆时针转90°后得到矩形EFCD,反比例函数y=
k
x
(x<0)的图象经过点E.
(1)求k的值;
(2)判断线段BE的中点M是否在反比例函数y=
k
x
(x<0)的图象上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=kx+4与函数y=
m
x
(x>0,m>0)的图象交于A、B两点,且与x、y轴分别交于C、D两点.
(1)若△COD的面积是△AOB的面积的
2
倍,求k与m之间的函数关系式;
(2)在(1)的条件下,是否存在k和m,使得以AB为直径的圆经过点P(2,0)?若存在,求出k和m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案