精英家教网 > 初中数学 > 题目详情

操作与探究:
如图,在平面直角坐标系xOy中,已知点的坐标为(1,0).将线段绕原点O沿逆时针方向旋转45,再将其延长到,使得,得到线段;又将线段绕原点O沿逆时针方向旋转45,再将其延长到,使得,得到线段,如此下去,得到线段,…,

(1)写出点M5的坐标;
(2)求的周长;
(3)我们规定:把点0,1,2,3…)的横坐标,纵坐标都取绝对值后得到的新坐标称之为点的“绝对坐标”.根据图中点的分布规律,请写出点的“绝对坐标”.

(1)M5(―4,―4)(2)的周长是(3)①当时(其中=0,1,2,3,…),点在轴上,则) 
②当时(其中=1,2,3,…),点在轴上,点) 
③当=1,2,3,…,时,点在各象限的分角线上,则点

解析试题分析:解:(1)M5(―4,―4) 
(2)由规律可知,,  
的周长是  
(3)解法一:由题意知,旋转8次之后回到轴的正半轴,在这8次旋转中,点分别落在坐标象限的分角线上或轴或轴上,但各点“绝对坐标”的横、纵坐标均为非负数,因此,点的“绝对坐标”可分三类情况:
令旋转次数为
① 当点M在x轴上时: M0),M4),M8M12),…,
即:点的“绝对坐标”为()。  
② 当点M在y轴上时: M2,M6,M10,M14,……,
即:点的“绝对坐标”为.  
③ 当点M在各象限的分角线上时:M1M3M5M7   ,即:的“绝对坐标”为.  
解法二:由题意知,旋转8次之后回到轴的正半轴,在这8次旋转中,点分别落在坐标象限的分角线上或轴或轴上,但各点“绝对坐标”的横、纵坐标均为非负数,因此,各点的“绝对坐标”可分三种情况:
①当时(其中=0,1,2,3,…),点在轴上,则) 
②当时(其中=1,2,3,…),点在轴上,点) 
③当=1,2,3,…,时,点在各象限的分角线上,则点) 
考点:探究规律题型
点评:本题难度较大,主要考查学生对几何题型综合探究规律综合运用的掌握。为中考常考题型,要求学生多做探究训练,总结分析规律,运用到考试中去。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、操作与探究:
如图1,在正方形ABCD中,AB=2,将一块足够大的三角板的直角顶点P放在正方形的中心O处,将三角板绕O点旋转,三角板的两直角边分别交边AB、BC于点E、F.
(1)试猜想PE、PF之间的大小关系,并证明你的结论;
(2)求四边形PEBF的面积;
(3)现将直角顶点P移至对角线BD上其他任意一点,PE、PF之间的大小关系是否改变?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•裕华区二模)如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年北京市丰台区中考一模考试数学试卷(解析版) 题型:解答题

操作与探究:

如图,在平面直角坐标系xOy中,已知点的坐标为(1,0).将线段绕原点O沿逆时针方向旋转45,再将其延长到,使得,得到线段;又将线段绕原点O沿逆时针方向旋转45,再将其延长到,使得,得到线段,如此下去,得到线段,…,

(1)写出点M5的坐标;

(2)求的周长;

(3)我们规定:把点0,1,2,3…)的横坐标,纵坐标都取绝对值后得到的新坐标称之为点的“绝对坐标”.根据图中点的分布规律,请写出点的“绝对坐标”.

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

操作与探究:
如图1,在正方形ABCD中,AB=2,将一块足够大的三角板的直角顶点P放在正方形的中心O处,将三角板绕O点旋转,三角板的两直角边分别交边AB、BC于点E、F.
(1)试猜想PE、PF之间的大小关系,并证明你的结论;
(2)求四边形PEBF的面积;
(3)现将直角顶点P移至对角线BD上其他任意一点,PE、PF之间的大小关系是否改变?并说明理由.
精英家教网

查看答案和解析>>

同步练习册答案