精英家教网 > 初中数学 > 题目详情
如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M。

(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
(1)根据题意及中点的性质得出四边形CBED是平行四边形,根据平行四边形的性质得出∠DEM=∠BFM,∠EDM=∠FBM,从而得出△EDM∽△FBM;(2)3

试题分析:(1)根据题意及中点的性质得出四边形CBED是平行四边形,根据平行四边形的性质得出∠DEM=∠BFM,∠EDM=∠FBM,从而得出△EDM∽△FBM;
(2)根据(1)中三角形相似的比例关系即可推理得出答案.
解:(1)∵E是AB的中点,
∴AB=2EB,
∵AB=2CD,
∴CD=EB,
又∵AB∥CD,
∴四边形CBED是平行四边形,
∴CB∥DE,
∴∠DEM=∠BFM,∠EDM=∠FBM,
∴△EDM∽△FBM;
(2)∵△EDM∽△FBM,

∵F是BC的中点,
∴DE=BC=2BF,
∴DM=2BM,
∴DB=DM+BM=3BM,
∵DB=9,
∴BM=DB=3.
点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.

(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;
(i)当点P与A,B两点不重合时,求的值;
(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川泸州2分)如图,在等腰直角△ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:
(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=2OP•OC.其中正确的结论有【  】

A.1个     B.2个     C.3个     D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为
A.B.C.2D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为(  )
A.B.7C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

△ABC中,D、E分别是边AB与AC的中点,BC=4,下面四个结论:①DE=2;②△ADE∽△ABC;③△ADE的面积与△ABC的面积之比为 1:4;④△ADE的周长与△ABC的周长之比为 1:4;其中正确的有     .(只填序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8。P是AC上的一个动点,当P在AC上运动时,设PC=x,△ABP 的面积为y.
(1)求AC边上的高是多少?
(2)求y与x之间的关系式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,M、N分别是边AB、AC的中点,则△AMN的面积与四边形MBCN的面积比为

(A)        (B)        (C)        (D)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,D、E分别是AB、AC的中点,连结DE,若S△ADE =1,则S△ABC =_____________.

查看答案和解析>>

同步练习册答案