精英家教网 > 初中数学 > 题目详情

【题目】如图1是一个新款水杯,水杯不盛水时按如图2所示的位置放置,这样可以快速晾干杯底,干净透气;将图2的主体部分的抽象成图3,此时杯口与水平直线的夹角35°,四边形ABCD可以看作矩形,测得AB=10cm,BC=8cm,过点A作AF⊥CE,交CE于点F.
(1)求∠BAF的度数;(sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)
(2)求点A到水平直线CE的距离AF的长(精确到0.1cm)

【答案】
(1)解:作BM⊥AF于M,BN⊥CF于N.

∵AF⊥EN,

∴∠MFN=∠BMF=∠BNF=90°,

∴四边形BMFN是矩形.

∴BM∥FN,

∴∠MBC=∠BCN=35°,

∵四边形ABCD是矩形,

∴∠ABC=90°,

∴∠ABM=90°﹣∠MBC=55°,

∴∠FAB=90°﹣∠ABM=35°,

故答案为35°


(2)解:在Rt△CBN中,∵BC=8,

∴FM=NB=BCtan35°=0.5736×8≈4.59,

在Rt△ABM中,AM=ABcos35°=10×0.8102≈8.20,

∴AF=AM+FM=8.20+4.59≈12.8(cm)


【解析】(1)作BM⊥AF于M,BN⊥CF于N.由BM∥FN,推出∠MBC=∠BCN=35°,由题意∠ABM=90°﹣∠MBC=55°,推出∠FAB=90°﹣∠ABM=35°.(2)分别在Rt△CBN,Rt△ABM中求出AM、BN即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。

1)求第一批购进书包的单价是多少元?

2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕。

(1)试判断B'E与DC的位置关系并说明理由。

(2)如果∠C=130°,求∠AEB的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,直线与直线.

1】(1)求两直线与轴交点AB的坐标;

2】(2)求两直线交点C的坐标;

3】(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=4,E,F分别是边BC,CD边上的动点,且AE=AF,设△AEF的面积为y,EC的长为x.

(1)求y与x之间的函数表达式,并写出自变量x的取值范围.
(2)当x取何值时,△AEF的面积最大,最大面积是多少?
(3)在直角坐标系中画出y关于x的函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

(1)如图(1),等边△ABC内有一点P到顶点A,B,C的距离分别为3,4,5,则∠APB=
分析:由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌ , 这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:BE2+CF2=EF2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点C∠AOB的一边OA上,过点C的直线DE∥O B.做∠ACD的平分线CF,过点CCF的垂线CG,如图所示.

(Ⅰ)若∠AOB=40°,求∠ACD∠ECF的度数;

(Ⅱ)求证:CG平分∠OCD;

(Ⅲ)延长FCOB于点H,用直尺和三角板过点OOR⊥FH,垂足为R,过点O

FH的平行线交ED于点Q.先补全图形,再证明∠COR=∠GCO,∠CQO=∠CHO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形的对角线相交于点,过点,连接,连接于点.

(1)求证:;

(2)若菱形的边长为2, .求的长.

【答案】(1)证明见解析(2)

【解析】试题分析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;

(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.

(1)证明:在菱形ABCD中,OC=AC

DE=OC

DEAC

∴四边形OCED是平行四边形.

ACBD

∴平行四边形OCED是矩形.

OE=CD

(2)在菱形ABCD中,∠ABC=60°

AC=AB=2.

∴在矩形OCED中,

CE=OD=

RtACE中,

AE=

点睛:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.

型】解答
束】
25

【题目】如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).

(1)求反比例函数与一次函数的表达式;

(2)结合图像写出不等式的解集;

(3)点E为y轴上一个动点,若SAEB=10,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】投掷一枚质地均匀的正方体骰子.

(1)下列说法中正确的有 (填序号)

①向上一面点数为1点和3点的可能性一样大;

②投掷6次,向上一面点数为1点的一定会出现1次;

③连续投掷2次,向上一面的点数之和不可能等于13.

(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是你同意他的说法吗?说说你的理由.

(3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同.(友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)

查看答案和解析>>

同步练习册答案