精英家教网 > 初中数学 > 题目详情
如图,抛物线交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.

(1)请直接写出抛物线y2的解析式;
(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;
(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.
解:(1)抛物线向右平移4个单位的顶点坐标为(4,-1),
∴抛物线y2的解析式为
(2)当x=0时,y1=﹣1,y1=0时,=0,解得x=1或x=-1,
∴点A(1,0),B(0,-1)。∴∠OBA=450
联立,解得
∴点C的坐标为(2,3)。
∵∠CPA=∠OBA,
∴点P在点A的左边时,坐标为(-1,0);在点A的右边时,坐标为(5,0)。
∴点P的坐标为(-1,0)或(5,0)。
(3)存在。
∵点C(2,3),∴直线OC的解析式为
设与OC平行的直线
联立,消掉y得,
当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,
此时,由一元二次方程根与系数的关系,得
∴此时,
∴存在第四象限的点Q(),使得△QOC中OC边上的高h有最大值,
此时,解得
∴过点Q与OC平行的直线解析式为
令y=0,则,解得
设直线与x轴的交点为E,则E(,0)。
过点C作CD⊥x轴于D,

根据勾股定理,
则由面积公式,得,即
∴存在第四象限的点Q(),使得△QOC中OC边上的高h有最大值,最大值为
(1)写出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可。
(2)根据抛物线解析式求出点A、B的坐标,然后求出∠OBA=45°,再联立两抛物线解析式求出交点C的坐标,再根据∠CPA=∠OBA分点P在点A的左边和右边两种情况求解。
(3)先求出直线OC的解析式为y=x,设与OC平行的直线y=x+b,与抛物线y2联立消掉y得到关于x的一元二次方程,再根据与OC的距离最大时方程有且只有一个根,然后利用根的判别式△=0列式求出b的值,从而得到直线的解析式,再求出与x轴的交点E的坐标,得到OE的长度,再过点C作CD⊥x轴于D,然后根据面积公式求解即可得到h的值。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.

(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.

(1)求抛物线的函数表达式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(,0),以OC为直径作半圆,圆心为D.

(1)求二次函数的解析式;
(2)求证:直线BE是⊙D的切线;
(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.

(1)求点A、B、C、D的坐标;
(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;
(3)取点E(,0)和点F(0,),直线l经过E、F两点,点G是线段BD的中点.
①点G是否在直线l上,请说明理由;
②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=1200

(1)求这条抛物线的表达式;
(2)连接OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AB=BC,AC=8,tanA=k,P为AC边上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.

(1)证明:△PCE是等腰三角形;
(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;
(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.

(1)判断线段AP与PD的大小关系,并说明理由;
(2)连接OD,当OD与半圆C相切时,求的长;
(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.

查看答案和解析>>

同步练习册答案