精英家教网 > 初中数学 > 题目详情
10.“五一”节期间在我市市民广场进行了热气球飞行表演,如图,有一热气球到达离地面高度为36米的A处时,仪器显示如图,有一热气球到达离地面高度为36米的A处时,仪器显正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,$\sqrt{3}$≈1.73)

分析 过点A作AD⊥BC于D,在Rt△ACD中求出AD,在Rt△ABD中求出BD,继而可得出答案.

解答 解:如图,过点A作AD⊥BC于D,
在Rt△ACD中,∠2=60°,CD=36米,
∵tan∠2=$\frac{CD}{AD}$,
∴AD=CD÷tan∠2=36÷$\sqrt{3}$=12$\sqrt{3}$米,
在Rt△ABD中,∵∠1=37°,
∴BD=ADtan37°=12$\sqrt{3}$×0.75≈12×1.73≈15.6米.
答:为了安全飞越高楼,气球应至少再上升15.6米.

点评 本题考查了解直角三角形的应用,构造直角三角形是解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为4$\sqrt{2}$dm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知xa=2,xb=3,则x2a-3b=$\frac{4}{27}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A( $\frac{1}{2}$,$\frac{5}{2}$)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C
(1)求抛物线的解析式;
(2)求出线段PC长度的最大值
(3)是否存在点P,使△APC为直角三角形?若存在,请直接写出相应的点P的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,物华大厦离小伟家60m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求该大厦的高度(结果精确到0.1米)
(sin37°≈0.602,cos37°≈0.799,tan37°≈0.754)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
(1)操作发现:
在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是①②③④(填序号即可)
①AF=AG=$\frac{1}{2}$AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.
(2)数学思考:
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系和位置关系?请给出证明过程;
(3)类比探索:
在任意△ABC中,仍分别以AB、AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.一个长方形在平面直角坐标系中三个顶点的坐标为(3,2),(-1,2),(3,-1),则第四个顶点的坐标为(-1,-1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.计算:$\sqrt{2}$+$\frac{1}{\sqrt{8}}$=$\frac{5\sqrt{2}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,平行四边形ABCD中,BE⊥AD于点E,以C为圆心,BC长为半径画弧,恰好过AD的中点F,若BC=4,BE=2,则图中阴影部分的面积为6-$\frac{4}{3}$π.

查看答案和解析>>

同步练习册答案